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1. INTRODUCTION  
      The fatigue failure of components has been 
studied extensively because of immense industrial 
interest as about 90% of failure are by fatigue. 
The general topic has been divided into a number 
of inter-related fields. These divisions include 
high and low cycle fatigue; fatigue of notched 
members, fatigue crack initiation and fatigue 
crack propagation among others. Hence 
understanding of fatigue failure is very important 
to many industrial applications. Another common 
engineering problem is the prediction of fatigue 
life reduction due to effect of local stress raisers. 
These stress raisers may be surface irregularities 
or fabrication flaws. 
At present there are various approaches to analyse 
and design against fatigue failure. The traditional 
approach is based on the analysis on nominal 
stress that can be resisted under cyclic loading. 
This is determined by considering mean stresses 
and by making adjustments for the effects of 
stress raisers such as grooves, fillets and 
keyways. This is known as stress based approach. 
Another approach is the strain-based approach, 
which involves more detailed analysis of the 
localised yielding that may occur at stress raisers 
under cyclic loading. The third approach is the 
fracture mechanics approach, which specifically  

 
treats growing cracks using the methods of 
fracture mechanics. 
 
2. LITERATURE REVIEW 
2.1 Cyclic Stress-Strain Curve  
     The response of material subjected to cyclic 
inelastic loading is in the form of hysteresis loop 
as shown in Fig.1. The width of the loop is total 
strain range ∆ε and total height of the loop is ∆σ, 
total stress range [1].  
Total stress amplitude (σa) and strain amplitude 
(εa) are given by the equation, 

εa = ∆ε/2,            σa = ∆σ/2   
 
 
 
 
 
 
 
 
 
 

Fig.1 Hysteresis loop 
 
Further the strain range ∆ε is, 
 ∆ε = ∆εe + ∆εp 
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In terms of amplitudes, we can write, 
∆ε/2 = ∆εe/2 + ∆εp/2 
 
∆ε/2 = ∆σ/2E + ∆εp/2  …  (i) 
 

Cyclic stress-strain curve may be described by 
power curve equation, 

∆σ/2 = K′  (∆εp/2)n′    …(ii) 
 
∆εp/2 = (∆σ/2K′ )1/n′     …(iii) 
 

Putting equation (ii) and (iii)  in equation (i) 
 

∆ε/2 = (∆σ/2E) + (∆σ/2K′ )1/n′   …(iv) 
 

Equation (iv) is the Cyclic Stress-Strain equation.  
 
2.2 Low Cycle Fatigue   
      The usual way of presenting low cycle fatigue 
tests results is to plot plastic strain range ∆εp/2 
against 2Ni. Fig. 2 shows that a straight line is 
obtained when plotted on log-log coordinates.     
This behavior is best described by Coffin-Manson 
relation [1], 

∆εp/2 = εf′  (2Ni)c     …(i) 
 
Also, c can be expressed according to Morrow as, 
 

 c     = -1 / (1 + 5n′ ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Strain-Life Curve 
 
Further using stress amplitude, the stress-life plot     
can be linearized as                                                                                
                                                                                    
 ∆σ/2=(σf/2)(2Ni)b      …(ii) 
 
The total strain is sum of the elastic and plastic 
strains. So in terms of amplitude, we can write, 
 
 ∆ε/2=∆εe/2  + ∆εp/2   …(iii)  
 

(∆ε/2) = (∆σ/2E)  + (∆εp/2)          …(iv) 
From equations (i), (ii), (iii) and (iv) 

 
∆ε/2 = σf′ /E (2N)b + εf′  (2N)c         … (v) 
 
Equation (v) is the strain life equation 
 

2.3 Neuber’s Rule 
       Neuber’s rule [2] states that the theoretical stress 
concentrations the geometric mean of the stress and 
strain concentration. Neuber analyzed a specific notch 
geometry and derived the following relationship: 

Kt =  (Kσ Kε )1/2 

 

By substituting the values of Kσ =σ/S and Kε = ε/ e 
 
   Kt

2 S e = σ ε 
 
       For nominally elastic behavior, remote strain, e, can 
be related to the remote stress, S, using Hook’s law. The 
notch response in terms of applied load can be described 
as 

Kt
2 S (S/ E)  = σ ε 

 
σ ε   =     (Kt S)2 / E  

                                           
                                Notch response        applied load 
          
      The values on the right hand side are known while σ 
and ε are to be determined. Thus for loading S, the 
value on the right hand side is constant. Thus,  
 

σ ε = Constant              … (i) 
 

This equation (i) shows the Neuber’s relationship, 
which is the Equation of hyperbola. Since the notch 
stress – strain response must lie on stress - strain curve 
of the material. The intersection of the two curves (the 
cyclic stress strain curve and Neuber’s hyperbola) 
provides the correct values of σ and ε for the initial 
loading, as shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Intersection of cyclic stress strain curve 
and Neuber’s hyperbola. 

 
      Analytically, the stress and strain coordinates of this 
point, P may be found using the equation of the cyclic 
stress-strain curve. 
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ε = (σ / E) + (σ/K′)1/n 

Substituting values from equation of Neuber’s 
hyperbola. 
 
               [ (σ/E) + (σ/K′)1/n] σ = (KtS)2 / E 
 
3. FRACTURE MECHANICS APPROACH: 
      The fracture approach specifically treats growing 
cracks using method of fracture mechanics. The Paris 
relation [2] can be used, which was proposed in the 
early 1960s. In this equation 
 
        da/dN = C(∆K)m                     … (i)                   

  
where C and m are material constants and ∆K is 
the stress intensity factor range (Kmax – Kmin). 
      The material constants, C and m can be found 
in the literature and in data books. Values of the 
exponent, m, are usually between 3 and 4.  
      The crack growth life, in terms of cycles to 
failure, may be calculated using above equation (i).  
Thus, cycles to failure, Np, may be calculated as 
Using the Paris formulations, 

 
        af 

Np = ∫ da/C(∆K)m 
      ai 

 
where ai is the initial crack length and af is the 
final (critical) crack length. 
       Because ∆K is a function of the crack length 
and a correction factor that is dependent on crack 
length, the integration above must often be solved 
numerically. As a first approximation, the 
correction factor, f(g), can be calculated at the 
initial crack length and equation can be evaluated 
in closed form [2]. 
 The stress intensity factor range is 
 

 ∆K = f(g) ∆σ    πa 
 

Substituting into the Paris equation yields 
 

da/dN = C (f(g) ∆σ     πa  ) m 

 
 
Separating variables and integrating (for m ≠ 2) 
gives 
 
      af 
Np = ∫ da/C( f(g)∆σ     πa  ) m 
      ai 

 
 
= 
 
 
 
 

 

 

3. MATERIAL PROPERTIES 
      Analysis has been carried out on piping components 
of two materials. The materials employed are low 
carbon steel and stainless steel. The material properties 
are as follows: 

1) Low Carbon Steel [3] 

a) Tensile stress strain curve 

Young’s modulus, E = 203 GPa 

Poisson’s Ratio,  µ = 0.3 

Yield strength,  Syt = 302 Mpa 

Ultimate strength, Sut = 450 Mpa 

b) Cyclic stress strain curve  constants 

Cyclic strength coefficient, K’ = 629 MPa 

Cyclic strain hardening coefficient, n’ = 0.168 

c) Strain life equation constants 

Fatigue strength coefficient, σ′f = 586 MPa 

Fatigue ductility coefficient, ε′f = 0.2406 

Fatigue strength exponent, b = - 0.0752 

Fatigue ductility exponent, c = - 0.4814 

d) Paris law constants 

C = 3.807 x 10-12 m/cycle, m = 3.03445 

 

2) Stainless Steel 304LN [4] 

a) Tensile stress strain curve 

Young’s modulus, E = 195 GPa 

Poisson’s Ratio,  µ = 0.3 

Yield strength,  Syt = 318 MPa  

Ultimate strength, Sut = 617 MPa 

b) Cyclic stress strain curve constants [6] 

Cyclic strength coefficient, K’ = 454 MPa 

Cyclic strain hardening coefficient, n’ = 0.351 

c) Strain life equation constants [6] 

Fatigue strength coefficient, σ′f = 211.52 MPa 

Fatigue ductility coefficient, ε′f = 0.1135 

Fatigue strength exponent, b = - 0.12741 

Fatigue ductility exponent, c = - 0.362 

d) Paris law constants 

C = 2.33 x 10-12 m/cycle, m= 3.00 

4. EXPERIMENTAL CONDITIONS: 
      The experimental basis proposed for the benchmark 
is the case of a pipe subjected to a four point bending at 
room temperature. In this pipe, the geometric singularity 

2   

 (m –2) C( f(g)∆σ √π )m 

1 1 

ai
(m-2)/ 2 af

(m-2)/ 2 
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is an axi-symmetrical notch, machined in the midsection 
of pipe. 

4.1 Specimen Geometry 

Fig.4 Specimen Geometry And Loading Conditions 

      The description of test geometry is given in Fig.4. In 
the cross-section, an axi-symmetric notch machined. 
The precise descriptions of the pipe and notch geometry 
for six different cases are tabulated below. 

 
Table 1. Test geometry for low carbon steel  

Case Do 
(mm) 

t 
(mm) 

A 
(mm) 

2C 
(mm) 

Lo 
(mm) 

Li 
(mm) 

I 324 21.5 5 100 5000 1480 

 

Table 2.  Test geometry for stainless steel  

Case Do 
(mm) 

t 
(mm) 

a 
(mm) 

2C 
(mm) 

Lo 
(mm) 

Li 
(mm) 

II 170 14.4 3.42 14 1700 680 

 
Table 3. Loading conditions for low carbon steel 

Case Maximum 
load, kN 

Minimum 
load ,kN 

Load ratio 

R  
I 308 50.31 0.16 

 

Table 4   Loading conditions for stainless steel 

Case Maximum 
load, kN 

Minimum 
load, kN 

Load ratio 

R  
II 258 25.8 0.1 

 
5. ANALYTICAL PROCEDURE 
5.1 Prediction Of Fatigue Crack Initiation 
Life 
       Strain-life approach is used for calculation of 
crack initiation life, as it is reliable under number 
of circumstances. The general methodology 
consists of calculation of notch tip strain and 
stress for obtaining Neuber’s hyperbola. The 
intersection of Neuber’s hyperbola and cyclic 
stress-strain curve gives a strain value, which can 
be used in strain-life equation for calculating 
crack initiation life.    

 
1. Calculation of Stress Intensity Factor Range 

a) Calculate the reaction at the supports due 
to applied load ‘p’ and calculate maximum 
and minimum bending moments i.e. 
(Mb)max and (Mb)min. 

b) Calculate bending stress ‘σb’ due to 
bending moment by using formula. 
∆σb =∆Mb Y/I  
where, ∆Mb = Mb max – Mb min 

c) By knowing crack depth a, crack length L, 
and thickness of pipe t, determine a/t, Ri/t 
and l/a ratios and then find out the 
geometric factor f(g) from the data 
available in the handbooks. 

d) Stress intensity factor range is given by 
∆K = ∆σ f(g) √(πa),   

 
2. Calculation of Crack Initiation Life: 
a) The local stress (∆σ)tip at the tip if the notch is 
given by following equation, 
 
(∆σ)tip = (∆K / √2πr [cosθ/2 (1+ sinθ/2 sin3θ/2) ]                
[1+ ρ/2r] 

 
Fig.5 Reference coordinates and stresses in the 
near tip region of a notch in a plate. 
 
Where, r = d + ρ/2 as shown in Fig.5 
 
b) Strain range at the tip is given by the equation, 
 
 (∆ε)tip = (∆σ)tip/E (2 (1+µ) / 3 ) 
 
c) Equation for Neuber’s hyperbola is given by 
 
 (∆σ)tip (∆ε)tip= Constant. 
 
d) From cyclic stress-strain curve strain amplitude 
is given by 
 
 (∆ε/2) = (∆σ/2E) + (∆σ/2K’)1/n’ 

 
e) Solving equations from (c) and (d) 
simultaneously for obtaining point P as shown in 
Fig.3. The corresponding value of strain is used 
for calculating initiation life in step (f). 
f) Then by using strain life curve the crack 
initiation life can be calculated by the equation.  
  
 (∆ε/2) = (σ’f /E) (2Ni) b + ε’f (2Ni) c 
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5.2 Prediction Of Fatigue Crack 
Propagation Life  
      In fracture mechanics approach it is assumed 
that crack is present in the component. We can 
calculate No. of cycles (Np) required to propogate 
the initial crack to its critical length. 
  From the Paris law relationship, we have 
derived the equation,  
 
       af 
Np = ∫ da /C( f(g)∆σ     πa  ) m 
       ai 
 

From this equation Np can be calculated 

6. RESULTS AND DISCUSSION 
6.1 Fatigue Crack Initiation 
      Analytical studies have been carried out for fatigue 
crack initiation from machined notch. In this analysis, 
crack driving force i.e. Stress Intensity Factor (K) at the 
notch tip has been evaluated for given loading condition 
of pipes. The SIF has been used for evaluating the stress 
at the notch tip. The notch tip radius‘ρ’ and 
characteristic distance ‘d’ has been considered for 
calculating stress at the notch tip. Actual stress and 
strain at the notch tip has been evaluated considering the 
Neuber’s rule and cyclic stress-strain curve for the pipe 
material under study. Number of cycles for crack 
initiation has been obtained from the low cycle fatigue 
curve of the material and strain range, calculated above. 
Effect of notch tip radius ‘ρ’ for given characteristic 
distance ‘d’ is shown in Fig.6. for case I . It has been 
found that in general with increase in notch tip radius, 
number of cycles for fatigue crack initiation increases. 
This effect becomes significant for d >70µ. Finally it 
can be said that, the notch tip radius has significant role 
to play in number of cycles required for initiation of 
crack from machined notch. Therefore for analytical 
calculation, for number of cycles for fatigue crack 
initiation, notch tip radius should be known 
accurately.Effect of characteristic distance ‘d’ for given 
notch tip radius sre shown in Fig.7 for case I . Here also 
number of cycles required for fatigue crack initiation 
increase with increase in ‘d’ in general for given notch 
tip radius. This effect becomes more significant at ρ > 
0.4mm. Characteristic distance ‘d’ depends on the 
material characteristics. For materials under study ‘d’ 
varies from 40-70 µ. Since there is significant effect of 
‘d’ on number of cycles for fatigue crack initiation, this 
parameter also should be known accurately. 

6.2 Fatigue Crack Propagation     
       Fatigue crack propagation analysis has been carried 
out on the basis of Paris law. In this study, analysis has 
been carried out for the crack growth up to a/t = 0.8 as 
the geometry factor available are up to a/t = 0.8. The 
crack depth Versus number of cycle curves for case I is 
shown in Fig.8 
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             Fig. 6. Variation of ‘ρ’ versus Ni  for CASE I                          
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        Fig. 7.  Variation of  ‘d’ versus Ni for CASE I 
 
        The figures show that the crack growth curve for 
carbon steel is in good agreement with the experimental 
results. This is because the material properties have 
been used in the analysis, which has been determined 
from the same pipe material. The Fig. 9 shows that 
crack growth curve for stainless steel differs from 
experimental curve to some extent. Out of the reasons 
for this variation may be due to the assumed material 
properties taken from the literature for similar steel. The 
graphs show the relationship between changing crack 
depth and corresponding elapsed stress cycles. The 
graph shows that most of the life of the component is 
spent while the crack depth is relatively small. While, 
considerably least of the life of a component is spent 
while depth is high. This is because initially material 
offers resistance to cracking and more stress is required 
to cause growth. After certain growth of crack, 
resistance offered reduces drastically and crack growth 
occurs faster, thus taking fewer cycles. Also, it is 
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observed that for low cycle fatigue, majority of life is 
consumed in propagation of crack.  

7. CONCLUSIONS: 
        Following conclusions can be drawn from the 
analytical studies carried out for the pipe having 
machined notch. 

1.  Number of cycles required for crack initiation can be 
predicted by evaluating fracture mechanics mere 
accurately. Notch tip radius ‘ρ’ and characteristic 
distance ‘d’ has significant effect on the number of 
cycles for crack initiation. 
2. Fatigue crack growth life can be predicted well by 
Paris law. Paris law constants for the material shall be 
known using standard specimen for more accurate 
prediction.  
3. The crack growth curve for carbon steel is in good 
agreement with the experimental results while the crack 
growth curve for stainless steel differs from 
experimental curve to some extent.  
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     Fig. 8 Variation of ‘a’ versus Np   for CASE I 
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Fig.9. Variation of ‘a’ versus Np   for CASE II 
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9. NOMENCLATURE 
 
Symbol Meaning Unit 
ρ Notch root radius mm 
∆σ Stress range MPa 
(∆σ)tip Stress range at crack tip MPa 
(∆ε)tip Strain range at crack tip ---- 
∆εe Elastic strain range ---- 
∆εp Plastic strain range ---- 
∆K Stress intensity factor range MPa√m 
2c Crack length of elliptical 

crack 
mm 

2Ni Reversals to crack initiation cycles 
a Instantaneous crack depth mm 
C Coefficient of Paris law  m/cycle 
d Characteristic distance microns 
da/dN Crack growth rate mm/cycle 
Di Inner diameter  mm 
Do Outer diameter  mm 
E Young’s modulus GPa 
f(g) Geometric factor ---- 
K Stress intensity factor MPa√m 
Li Distance between two 

loading points (Inner span) 
mm 

Lo Distance between supports 
(outer span) 

mm 

Np Propagation life Cycles 
P Applied load kN 
Pmax Maximum applied load  kN 
Pmin Minimum applied load  kN 
R Stress ratio ---- 
S Remote stress  MPa 
 


