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INTRODUCTION 
     Neural computing is one of the fastest growing 
areas of artificial intelligence. The reasons for this 
growth is that neural networks hold great promise 
for solving problems that have proven to be 
extremely difficult for standard digital computers. 
There are two key differences between neural 
computers and digital computers. First neural 
networks are inherently parallel machines and as a 
result they can solve problems much faster than a 
serial digital computers. Secondly and perhaps 
more importantly, many neural networks have the 
ability to learn [1]. Recently it has been proved 
that multi-layer feed forward neural networks offer 
interesting possibilities for modelling any non-
linear process without a priori knowledge [2]. A 
Nonlinear Autoregressive – Moving Average 
(NARMA) is one that uses a model to evaluate how 
control strategies will affect the future behavior of 
the plant. With neural network as the model, 
NARMA_L2 Control can be used to control non-
linear plants. The use of dynamic process models 
allows the user to systematically design a control 
system without resorting to adhoc tuning methods 
[3]. Therefore the application of neural network 
based NARMA_L2 control becomes very 
attractive.  
OBJECTIVES OF THE PRESENT STUDY 
     The objectives of the present work include 
development of dynamic modelling for  Hot 
extrusion of 0.3% carbon steel using Levenberg 
Marquardt algorithm, which is a modification of 

standard back propagation algorithm and to design 
a neural network based NARMA_L2 control for the 
above process. The micro structural variables such 
as strain, strain rate and temperature were 
optimized in the first stage. Based on the optimized 
parameters the die profile for extrusion were 
optimized in the second stage.   
 
PROBLEM DESCRIPTION  
     The control of microstructure in metal working 
processes is needed for better quality. A new 
methodology for calculating optimal control 
parameters for hot deformation process for micro 
structural control is proposed. This approach is 
based on the Neural network control and involves 
developing neural network models from available 
material behavior and hot deformation process 
models. The control system design consists of two 
stages, analysis and optimization. In the analysis 
stage, using the empirical models for 
microstructure development and NARMA_L2 
control optimum strain (ε(t)), strain-rate (έ(t)), and 
temperature (T(t)) trajectories for processing were 
estimated. The available simulation models for ram 
velocity and extrusion profile were then used to 
calculate process control parameters such as ram 
velocity and die profile to achieve the strain, strain 
rate and temperature trajectories obtained earlier. 
The two-stage approach for micro structural control 
was applied to the hot extrusion of 0.3 % carbon steel 
based on the models used by Frazier et al [4]. 
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ABSTRACT 
In the present study an attempt was made to control the microstructure evolution during extrusion
using the NARMA_L2 Control approach with Neural Networks. The final grain size after extrusion 
was considered as the optimal criterion and the grain size was expressed in terms of strain, strain rate
and temperature. The steps involved in NARMA _L2 Control approach include process modelling, 
system identification and controller design. The trajectories of the independent variables to achieve
the desired grain size were obtained and the strain values were further utilized to optimize the
dimensions of the extrusion die profile to achieve the required grain size.  
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Average recrystallized grain size 
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Activation energy and gas constant 
 
Q = 267 KJ/Mol,  
R = 8.314X10-3 KJ/ Mol.k.   

 
Time derivative of temperature 
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OPTIMIZATION OF PROCESS PARAMETERS  

The trajectory of strain, strain rate temperature are 
obtained in the first stage.  Process parameter such as 
die geometry, ram velocity, billet temperature are obtained 
in second stage. 
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where L = die length. ε (t) = strain trajectory, 
Vram= ram velocity 
 

The die shape can be described by the radius r and 
axial distance (die throat length) y,  radius at entrance r0, 
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The optimal die profile for achieving final grain 

sizes of 26 and 30 µm obtained using this approach. 
 
 
 
 
 

 
 
 
 
 
 
 
NEURAL MODEL  
     The architecture of neural network plant model is 
shown in Fig.1. The architecture of the neural network 
used for identification is 5-9-1, where two of the input 
nodes are used for the shifted feedback signal from the 
output of the network and one node is used  as bias and 
the remaining nodes are used for shifted input signal.  

          Fig.1 Neural Model 
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SYSTEM IDENTIFICATION USING NEURAL 
NETWORKS 
     Neural networks have been applied very successfully 
in the identification and control of dynamic systems. 
The universal approximation capabilities of the multi 
layer networks make it popular choice for modeling 
non-linear systems and for implementing general-
purpose non-linear controllers. In the system 
identification stage, a neural network model of the plant 
to be controlled is developed. In the control design 
stage, the neural network plant model is used to design 
the controller. The advantage of using artificial neural 

 
 

 
 
 
 

 
 

 
networks (ANN) to simulate the process is that 
after they are trained, they represent a quick and 
reliable way of predicting their performance. They 
can also be continuously updated. The whole 
training procedure uses 10,000 iterations. The 
corresponding model validation and testing data 

are shown in Fig.2 and Fig.3. The responses of the 
plant output and neural model output for the given 
input were found to almost same and hence the 
system identification is acceptable. The mean 
square during training of neural networks was 
found to be 5.705 X 10-10, which proved that the 
network has been trained with sufficient data. 
 

NARMA-L2 CONTROL 
NARMA-L2  is one of the neural network 

architecture that have been implemented in the 
MATLAB for prediction and control. NARMA-L2 
controller design is performed by two stages.  
1. System identification and 2. Control design.  

In the system identification stage, the neural 
network model of the plant which is to be 
controlled is designed. For controller design, the 
plant model which is identified is used.  

The neurocontroller designed is referred by 
two different names. (i) NARMA-L2 control and 
(ii) Feedback Linearization control. When the plant 
model is in companion form, then it is said to be 
NARMA-L2 control and when the plant model can 
be approximated by companion form is feedback 
linearization control. The central idea of this 
controller is to transform nonlinear system 
dynamics into linear dynamics by cancelling the 
nonlinearities. In NARMA-L2 control, the 
controller design is simply the rearrangement of 
plant model, which is trained offline  in batch 
form. It requires the least computation than model 
predictive and model reference controllers. If 
neural network is used as a controller, the 
parameters of NARMA-L2 have to be adjusted to 
achieve on line control. Only approximated 
methods are used in practice for controlling a plant 
represented by a NARMA-L2 control which 
reduces computational complexity. The desired 
input can be computed algebraically from the 
identification model and hence a separate 
controller neural network is not needed in 
NARMA-L2 controller. The model outputs are very 
close to the actual plant output in NARMA-L2  

which implies that the identification error is 
marginally less. In adaptive control problems 
where the plant parameters are assumed to be 
unknown, NARMA-L2 makes the estimation 
procedure straight forward [3]. 
 
CONTROLLER DESIGN 
       In NARMA-L2 controller, design is simply the 
rearrangement of plant model. Approximated 
NARMA-L2 model is  
 

y(k+d) = f[y(k), ...y(k-n+1),u(k-1),..u(k-m+1)] 
+ g[y(k), y(k-1), …y(k-n+1), u(k-1),…u(k-m+1)] u(k) 

 
When y(k+d) = yr (k+d),  
then the next control input 

 
           yr(k+d)-f[y(k),…y(k-n+1),u(k-1)…u(k-n+1)]  
u(k) = –––––––––––––––––––––––––––––––––––  
         g[y(k),y(k-1),…y(k-n+1),u(k-1)…u(k-n+1)] 

  Fig.2  Validation of the Identified Neural Model  

Fig.3  Testing of identified  Neural Model  
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     Direct use of this equation can cause realization 
problems, because of control input u(k)  
determination is based on the output at the same time 
y(k), where d>2. The block diagram of NARMA – L2 
controller is shown in Fig.4. 
     The output error is used to adjust the neural 
network through a dynamic procedure. This approach 
combines the advantages of adaptive control and 
neural networks and is considered as a basic form to 
design a neurocontroller. 
 
 

 
    Fig.4 Block diagram of NARMA_L2 Control 
 
 
 
OPTIMIZING THE MICRO STRUCTURAL 
TRAJECTORIES AND EXTRUSION PROFILE 
     The optimality criterion was chosen so as to 
attain a maximum strain of 2 while the 
recrystallized grain size was kept at a desired value 
of 26µm the average grain size of raw stock prior 
to extrusion was 180 µm starting at initial 
temperature of 1273K [4].  The results of 
additional optimization run to achieve grain size of 
30µm is also presented. Since the extrusion profile 
(radius and throat length) is a function of velocity 
of ram and strain, the corresponding trajectories 
can be used for optimizing the extrusion profiles. 
The trajectories for the process parameters and 
extrusion profile were obtained for 26 and 30µm 
(fig. 5 & 6). The simulation time was found to 
decrease with increase in grain size and the radius 
of die at the exit was found to increase with the 
grain size(fig. 7 & 8).  
 
 
 

CONCLUSIONS 
1. NARMA_L2 control can be used for micro 

structural development in material 
processing.  

 
2. The strain , strain rate and temperature 

trajectories can be optimized to achieve the 
required grain size 

 
3. The strain and velocity trajectories can be 

used to optimize the extrusion profile to 
achieve the required grain size. 

 
4. The simulated results can be validated 

through experiments. 
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Fig.8  Optimal die profile Grain size = 
30µm 

Fig.7  Optimal die profile Grain size =
26µm 
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Fig.5  Optimal Trajectories for Gain Size = 26µm 
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Fig.6  Optimal Trajectories for Grain Size =
30µm


