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1. INTRODUCTION 
    The use of built-in cantilevers in the construction of 
engineering structures is quite extensive. Although the 
simple flexure theory is widely used for the design 
purposes of such beams, it is simply inadequate to give 
information regarding local stresses around the regions 
of the loads and supports of beams. Moreover, when the 
beam depth becomes comparable to its length, design 
based on classical theory becomes unreliable and 
uneconomic, since the distributions of bending and 
shearing stresses are not linear and parabolic, 
respectively, in cases of deep / short beams [1]. 
    As far as literature is concerned several attempts have 
been made for the analysis of deep beams. However, 
most of the researchers concentrated on the solution of 
the simply supported beams [1-4]. Successful attempts 
towards the prediction of reliable stresses around the 
fixed end of short cantilevers have hardly been made in 
the past mainly because of the inability to satisfy the 
actual conditions of the supports in a justified manner, by 
their mathematical formulation. It is however noted that 
Murty [5] obtained the solution of a tip-loaded cantilever 
beam by using his higher order theory for bending. 
However, the solution gives a constant shearing stress 
distribution around the fixed end and the classical 
parabolic distribution for sections sufficiently away from 
the fixed end. It has been found that the results do not 
always satisfy the restraint conditions as well as the 
conditions of equilibrium. Moreover, the shearing 
stresses along the upper and lower edges do not vanish; 
rather their values become large in the neighborhood of 
the fixed support. Also, the strain energy contributed by 

bending stress is neglected in his formulation, and the 
Poisson’s ratio is assumed to be zero. 
    Taking into account all the limitations, the potential 
displacement function formulation [6] has been used in 
conjunction with the finite-difference method of solution 
to predict the displacement as well as stress distributions 
in short cantilever beam subjected to a pure bending 
moment at its free end. The accuracy as well as reliability 
of the finite-difference computer code has been verified 
repeatedly through the application of the program to a 
number of practical problems of engineering [7-12]. The 
present beam problem has been analyzed extensively 
where three different values of length-to-depth ratios are 
considered. Finally, an attempt is made to obtain the 
corresponding solutions using the finite element software, 
ANSYS and simple beam theory and the results are 
compared with those obtained by the present 
finite-difference method of solution.  
 
2. DESCRIPTION OF THE BEAM PROBLEM 
    The geometry and loading configuration along with 
the FDM mesh are illustrated in Fig. 1. The present 
problem is a typical fixed ended cantilever beam of 
uniform rectangular cross section, which is subjected to 
pure bending moment at its free end. The physical 
conditions at the four boundaries of the beam when 
stated mathematically are as follows: 
For the top surface, which is a free boundary, the normal 
and tangential components of stress are:  

0  x,   L0for      ,   0 ),( ),( =≤≤== yyxyx xyx σσ  
For the bottom surface, which is also a free a boundary, 
the normal and tangential components of stresses are: 
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d  x,   L0for      ,   0 ),( ),( =≤≤== yyxyx xyy σσ  
At the left lateral end, constraint to have zero slope, the 
respective normal and tangential components of 
displacement are  

0y  , 0for      0, ),(u ),( =≤≤== Lxyxyxu yx
 

For the right lateral end, which is subjected to a pure 
bending moment, the corresponding normal and 
tangential stresses are, 

0y  ,00for    0,),(  ;  
d/2
y),( 2 =≤≤== xyxmmKNyx yxx σσ  

 
3. SOLUTION OF SIMPLE BEAM THEORY 
    The stress caused by the bending moment is known as 
the bending or flexure stress, which is expressed by the 
following formula: 
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where, M, I and y are bending moment, moment of 
inertia and distance from neutral axis, respectively. One 
of the important assumptions on which this simple 
flexure theory is based is that the plane sections of the 
beam remain plane after deformation. The relation 
between the shearing stress (σxy) and the vertical shear 
force, for a rectangular cross section is given by,  
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where, V, b, 2c are shear force, beam thickness and beam 
depth, respectively. From the above mathematical 
expressions, it is obvious that, (1) the flexure stress at any 

section varies linearly with the distance from the neutral 
axis; maximum bending stress occurs at the top and 
bottom surfaces, and (2) shearing stress is distributed 
parabolically across the depth of the section; maximum 
shearing stress occurs at the neutral axis. 
 
4. FINITE-DIFFERENCE SOLUTION 
    Finite-difference solutions are obtained using 
displacement potential function formulation, where the 
problem has been formulated in terms of a single 
potential function, ),( yxψ defined in terms of the two 
displacement components, ux and uy. The governing 
differential equation for the solution of two-dimensional 
elastic problem is given by [6], 
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The boundary conditions in terms of the function ψ  are 
given by [10], 
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    In the present approach, the whole problem has been 
formulated in such a way that single function ψ  has to 
be evaluated from the bi-harmonic equation (3) 
associated with the boundary condition (4-8) that are 
specified at the bounding edges of the beam. The 
essential feature of the numerical version of the 
formulation is that the original governing differential 
equations of the boundary-value problem is replaced by a 
finite set of simultaneous algebraic equations and the 
solution of this simultaneous algebraic equations provide 
us with an approximation for the displacement and stress 
within the beam. For the present numerical calculation, 
Modulus of Elasticity and Poisson’s ratio are taken as 
209 GPa and 0.3, respectively. 
     
5. FINITE ELEMENT SOLUTION 
    Finite element solutions have been obtained using the 
standard elastic facilities available in the ANSYS 
software. Plane stress assumption is used here because, 
in practice, the thickness of such a beam is likely to be 
small when compared with the length or depth [1].  
    For this analysis 2-D structural element (PLANE 82) 
is used because of its regular rectangular shape, which 
makes it convenient to produce data at different sections 
of interest. The element is defined by 8 nodes having two 
degrees of freedom at each node, transition in x and y 
directions.  

Fig. 1(b): Finite-difference discretization of the 
beam body. 

Fig. 1(a) Geometry and loading for the  
Cantilever beam 
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    For the present numerical calculation, the total number 
of elements taken is 100 for the beams having L/d ratio of 
1, 2 and 3.  In order to maintain a similar level of 
accuracy in the solutions, it was desired to keep the 
element numbers the same for all the beams.  
 
6. RESULTS AND DISCUSSION 
    In the present section, numerical solutions for stresses 
and displacements obtained by the finite-difference 
approach are analyzed in details, and the results are 
compared with the finite-element and analytical 
solutions, at different transverse sections of the beams. 
    Figure 2 describes the comparison of three different 
solutions for the bending, shearing and normal stresses at 
the fixed support of the beams having different aspect 
ratios. In contrast with the typical parabolic distribution 
of shearing stress along the beam depth, the beam is 
virtually free from shearing stress as the beam is loaded 
by a pure bending moment at its end. That is why the 
shearing stress given by simple theory at different 
transverse sections ultimately reduced to a single 
horizontal line passing through the origin, as shown in fig. 
2(a). The theoretical results of bending stress vary 
linearly along the beam depth, and the stress level is 
identical at all the transverse sections including the fixed 
support (fig. 2(b)). This is due to the fact that the applied 
constant bending moment is acting throughout the entire 
span of the beam. Moreover, the simple theory tells us 
that the stresses in the present beam are completely 
independent of the length-to-depth ratios. 
    The corresponding finite-different solutions for the 
beam differ quite significantly from those of simple 
theory, especially, in the neighborhood of the fixed 
support of the beam. However, this discrepancy is found 
to decrease as we move away from the fixed end, where 
the numerical solutions compare well with the analytical 
solution of the simple theory.  
    From figure 2(a), it is observed that the distribution of 
shearing stress differs significantly from that obtained by 
simple theory, at the fixed support of the beam, which is 
theoretically free from shearing stress. However, at the 
top and bottom surfaces of the beam the finite-difference 
solutions of shearing stress match exactly with the 
theoretical results. From the comparisons of solutions of 
FEM and FDM, it is evident that both the results compare 
well except at the top and bottom surface of the beams. 
FDM solutions of shear stress at top and bottom surface 
are in accordance with the simple beam theory. Surface 
shear stresses at each section are zero. But FEM provides 
nonzero solutions both in top and bottom surface. This is 
perhaps due to the general limitation of the FEM in 
predicting the surface stresses, which has however been 
reported by several researchers [13-14]. Therefore, the 
finite element prediction of shearing stress, especially at 
the two surfaces of the beams, are not reliable and the 
discrepancy is found to be more pronounced near the 
vicinity of the fixed end, where FDM provides accurate 
solutions.  
    Bending stress distribution at the fixed end  (Fig. 2(b)) 
is almost linear, differing mainly at the two corner points, 
which are in general the points of singularity. The present 
results show that the maximum bending stress at the 

upper and bottom surfaces of the support are higher than 
those of all other transverse sections of the beam. Except  
the  fixed  end,  all  the  solutions  are  
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identical for all the sections of the beam and are in good 
agreement with the theoretical solution.  
    In addition to bending and shearing stresses, 
finite-difference solutions for the distribution of normal 
stress component, xσ  are obtained and those at the fixed 
end are presented in Figure 2(c). Note that simple beam 

theory does not take care of this stress component, 
although the importance of this stress component cannot 
be neglected as far as short beams are concerned. The 
normal stress component varies almost linearly along the 
fixed end of the beam, keeping the lower half portion 
under compression and the upper half portion under 
tension. From FEM solution, magnitudically, the normal 
stress component is even more significant than the 
shearing stress developed at the fixed support.   The 
comparison of present finite difference solution with that 
of FEM, at the fixed support, shows that the two 
solutions agree well only around the mid-region of the 
support. However, FEM predictions of normal stress xσ  
around the two corners of the support are found to be 
highly unreliable, as they do not conform to the 
requirement of the physical characteristics of the beam 
support. It is noted that the present numerical solution 
satisfies all the requirements exactly, at or away from the 
two corners of the support.     
    In order to investigate the influence of slenderness 
ratio on the solution, results are obtained for different 
aspect ratios (L/d). Figure 2 & 3 represent the 
distribution of shear, bending and normal stresses 
obtained by FDM, FEM and simple beam theory at the 
fixed end and at the transverse section, y/d = 0.10 
respectively for three different aspect ratios.  
     

    From fig. 2(a) and 3(a), it is observed that both the 
FDM and FEM solutions of shear stress are not 
independent of beam aspect ratio, rather maximum 
shearing stress increases with the increase of aspect ratio, 
especially for sections around the fixed support. For 
example, at the fixed end, y/L = 0.0, the values of the 
normalized shearing stress are -0.3, -0.42 and -0.61 for 
L/d = 1, 2 and 3, respectively. It can be seen that at a 
considerable distance from the fixed end, y/L = 0.1, FEM 
solutions still differ from those of FDM as the FEM 
predictions at the surfaces are not zero. But the 
dependency on the aspect ratio is found to be reduced 
significantly at sections away from fixed end. Bending 
stress distributions are almost identical for FDM, FEM 
and for simple theory for all the L/d ratios inspected. The 
non-linearity is observed mainly around the two corner 
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Fig. 4: Distribution of displacement component ux 
along the neutral axis of the beam, L/d = 1. 
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zones of the support. But this non-linearity diminishes as 
distance from the fixed end and aspect ratio is increased. 
Nearly identical variation of the normal stress 
component, as predicted by FDM, is observed along the 
support of all the beams inspected. FEM solutions, 
however, show dependency of the normal stress on 
aspect ratio, mainly at the two corner zones of the 
support. 
     

    Figure 4 demonstrates the deformation pattern of the 
neutral axis of the beam when subjected to a pure 
bending moment at its free end. Theoretical results are 
predicted using the equation  

EI
Myux 2

2
=               [9] 

    Typical deflection characteristics of a cantilever beam 
is confirmed here through the finite-difference as well as 
Finite Element prediction of displace component, as 
maximum deflection occurs at its free end, while the 
fixed support is free from any displacement.  
    Figure 5 represents the y-component of displacement 
uy (Dimension in mm) at two different sections of the 
beams. There is no mathematical formulation in simple 
theory to predict uy. Using finite-difference method of 
solution y-component of displacement can be determined 

accurately. For the current beam problem, the 
comparative analysis of displacements predicted by 
FDM and FEM shows that the two numerical solutions 
are in excellent agreement with each other at each and 
every section of the beams.    
 
7. CONCLUSIONS 
    The solution of short built-in cantilever beam had 
rarely been attempted in the past mainly because of the 
inability of satisfying the actual conditions of the fixed 
support of the beam in a justifiable manner. The fixed 
support of a cantilever beam, subjected to a pure bending 
moment at its free end, has been verified to be the most 
critical section in terms of stresses. The present 
investigation shows that the finite-difference predictions 
of bending and shear stresses compare reasonably well 
with the results of simple beam theory, especially for 
sections away from the fixed end. For predicting the 
critical stresses at the support, the simple theory has been 
verified to be unreliable for design purposes of such 
beams, no matte what value of length-to-depth ratio is 
considered. Furthermore, the comparison with FEM 
solutions of displacements and stresses reveals that the 
two solutions  are in good agreement with each other, 
except at the critical corner zones of the support. More 
specifically, the FEM prediction of stresses at the corner 
zones of the fixed support are not very accurate and thus 
are not reliable.    
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NOMENCLATURE 
 

Symbol Meaning  
x, y Rectangular Coordinate  

ux, uy  Displacement components   
xσ  Normal Stress  

yσ  Bending Stress  

xyσ  Shear Stress  
L Beam Length  
d Beam Depth  
b Beam Thickness  
ψ  Displacement Potential 

Function 
 

M Moment  

E Modulus of Elasticity  
I Moment of Inertia  
ω  Intensity of Moment Load  
V Shear Force  
µ  Poisson’s ratio  

 


