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1. INTRODUCTION 
     Functionally graded materials (FGMs) consist of two 
or more distinct material phases, such as different 
ceramics or ceramics and metals. The distribution of 
each material changes continuously with space variables, 
which introduces nonhomogeneity in the material. The 
nonhomogeneity depends on the material distribution 
that significantly affects both the thermal and mechanical 
characteristics of these materials. So far, many 
researchers have paid attention to investigate the effects 
of material distribution on the characteristics of these 
materials under various loading conditions and for 
various geometries.  Ootao et al. [1] considered an FGM 
hollow sphere for thermal stress relaxation by 
optimization of material distribution.  They [2] also 
considered an FGM hollow cylinder and optimized 
material distribution for thermal stress relaxation. 
Analyses of crack problems of these materials are also 
carried out with a view to investigating the fracture 
characteristics versus material distribution. Gu and 
Assaro [3] considered a semi-infinite crack in a strip of 
an isotropic, functionally graded material under edge 
loading and in-plane deformation conditions. Afsar and 
Sekine [4] dealt with the inverse problems of calculating 

material distributions for prescribed apparent fracture 
toughness in FGM coatings around a circular hole in 
infinite elastic media. They also considered semi-infinite 
FGM media with a single [5] and periodic [6] edge 
cracks and computed material distribution profiles for 
improved fracture characteristics. In another work [7], 
they calculated optimum material distributions in a 
thick-walled FGM circular pipe with a single radial edge 
crack for desired apparent fracture toughness. 
     From the analyses of homogeneous cylinder, it is 
found that two diametrically-opposed edge cracks 
represent the worst geometry of multiple cracking. This 
motivates the authors of this paper to consider an FGM 
cylinder for investigating the effect of material 
nonhomogeneity arising from non-uniform material 
distribution on the stress intensity factor. In this paper, 
two crack orientation viz. a single radial edge crack and 
two diametrically-opposed edge cracks emanating from 
the inner surface of the FGM cylinder are considered. 
The cylinder is subjected to internal pressure. The 
incompatible eigenstrain induced in the material due to 
non-uniform coefficient of thermal expansion as a result 
of cooling from sintering temperature is also taken into 
account. 
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Fig. 1 Analytical model of a thick-walled FGM cylinder 
 
 
2. MODELING OF THE PROBLEM 
     The analytical model of the problem is shown in Fig. 
1. The Cartesian coordinate system x-y and the polar 
coordinate system r-θ have the same origin at the center 
of the cylinder. The inner and outer radii of the cylinder 
are designated by Ri and Ro, respectively. The constituent 
materials of the cylinder are A and B which are 
represented by the black and white colors, respectively. 
The volume fractions of the constituent materials A and 
B are denoted by VA and VB, respectively. Also, shown in 
Fig. 1 are two diametrically-opposed edge cracks of 
equal length l. Along with the inner surface of the 
cylinder, the crack surfaces are subjected to internal 
pressure p. It is assumed that the distribution of each 
constituent material varies with the radial distance r only. 
When such a cylinder is cooled from sintering 
temperature, an incompatible eigenstrain ε* is induced in 
the material, which is also a function of r only and is 
given by 

 T∆αε −=* , (1) 

where α is the coefficient of thermal expansion which is 
a function of r only and ∆T is the difference between 
sintering and room temperatures. 
     For this model of the cylinder, the effect of material 
distribution on the stress intensity factor is investigated. 
 
3. STRESS INTENSITY FACTOR 
 
3.1 Approximation Method of Stress Intensity 

Factors 
    The presence of nonhomogeneity in FGMs 
complicates the analytical study of fracture 
characteristics of these materials due to some 
mathematical difficulties. Therefore, an approximation 
method [5] is adopted to calculate stress intensity factor 
for cracks in the FGM cylinder. According to the 
approximation method, the FGM cylinder is first 
homogenized by simulating the material 
nonhomogeneities by a distribution of equivalent 
eigenstrain. The distribution of equivalent eigenstrain is 

such that the elastic fields in both the FGM and 
homogenized cylinders are identical for the same loading 
condition. Then a method is formulated to calculate the 
stress intensity factor for the crack in the homogenized 
cylinder. Since the equivalent eigenstrain is determined 
from the condition of identical elastic fields in the 
uncracked FGM and homogenized cylinders, the elastic 
field in the cracked homogenized cylinder cannot exactly 
represent the elastic field in the cracked FGM cylinder. 
Consequently, the stress intensity factors calculated for a 
crack in the homogenized cylinder with the equivalent 
eigenstrain represent the approximate values of stress 
intensity factors for the same crack in the FGM cylinder. 
 
3.2 Equivalent Eigenstrain for Homogenization 
     As stated earlier, the equivalent eigenstrain to 
homogenize the FGM cylinder is determined from the 
condition of identical elastic fields in the FGM and 
homogenized cylinders. However, there is no 
straightforward method to determine the elastic field in 
FGM cylinder. Therefore, an alternate approach [7] is 
adopted for this purpose. The FGM cylinder is radially 
divided into layers of infinitesimal thickness as shown in 
Fig. 2, which shows one half of the cylinder. Each layer is 
assumed to have constant material properties but differ 
from the other layers. The inner and outer radii of the ith 
layer are, respectively, denoted by ri-1 and ri, where r0 = 
Ri and rn = Ro. The pressures at the inner and the outer 
surfaces of the ith layer are, respectively, f

iP 1−  and f
iP  

which are the resultant of pressures due to the applied 
internal pressure p and the incompatible eigenstrain *

iε  
in the ith layer. For this layered FGM cylinder, the stress 
field is given in Ref. [8]. 
     Now we consider a homogeneous cylinder having the 
same geometry and determine the elastic field due to the 
same applied internal pressure p and incompatible 
eigenstrain following the same techniques as the layered 
FGM cylinder. Here, it is noted that the material 
properties are same for all the layers. The elastic field for 
such a cylinder is given in Ref. [8]. Another elastic field 

Fig. 2 Layered FGM cylinder 
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in the homogeneous cylinder is determined due to 
equivalent eigenstrain. By principle of superposition, the 
resultant elastic field in the homogeneous cylinder is then 
obtained. Equating the elastic fields in the FGM and 
homogeneous cylinders, one can obtain the distribution 
of equivalent eigenstrain as 
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The effective properties Ei, νi, and αi of theFGM cylinder 
are determined by using the mixture rule given by Nan et 
al. [9]. 
     For the next of the analysis, the FGM cylinder can be 
replaced by the homogeneous cylinder (referred to as 
homogenized cylinder) of the same geometry if the 
equivalent eigenstrain in Eq. (2) is considered along with 
other loading. The equivalent eigenstrain in Eq. (2) and 
the incompatible eigenstrain *

iε are piecewise continuous. 
Their continuous distributions for the entire wall 
thickness of the non-layered homogenized cylinder are 
obtained by spline interpolation. Finally, the resultant 
stress field for the non-layered homogenized cylinder for 
the continuous distributions of equivalent and 
incompatible eigenstrains is derived [8]. The 
circumferential stress component of this stress field is 
given by 
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3.3 Numerical Formulation for Stress Intensity 
Factor 

     Now we consider two diametrically-opposed edge 
cracks in the homogenized cylinder as shown in Fig.3. 
Along with the internal pressure p, the incompatible and 
equivalent eigenstrains are considered. Therefore, the 
stress intensity factor for these cracks represents the 
approximate value of the stress intensity factor for the 
same crack in the FGM cylinder. 
     The stress field in Eq. (3a) derived for the uncracked 
homogenized cylinder is disturbed due to the presence of 
cracks. The redistribution of stress is calculated 
representing the cracks by a continuous distribution of 
edge dislocations. By satisfying the boundary conditions 
along the crack surfaces, the following singular integral 
equation is derived [8] 
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where Sf is the strength factor defined by the ratio of the 
ultimate strength σu of the base material B to the applied 
internal pressure p. 
     Using Gauss-Jacobi integral formula, Eq. (4) is 
converted to a system of linear algebraic equations to 
solve for )( jTϕ  as 
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Here, the collocation and integration points are given by 
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It can be shown that the stress intensity factor is [10] 
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where )1(+ϕ  is computed from Krenk’s [11] 
interpolation formula 
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By using Eqs. (5)-(8), one can readily calculate the stress 
intensity factor. Here, it is noted that the stress intensity 
factor for a single radial edge crack can be calculated by 
setting G2(Hi, Tj) equal to zero. 
 
4. RESULTS AND DISCUSSION 
     In order to present some numerical results, we 
consider a TiC/Al2O3 FGM cylinder in which TiC and 
Al2O3 represent the material A and B, respectively. The 
difference between sintering and room temperatures is 
taken as 1000°C while the number of layers of 
infinitesimal thickness is taken as 50 in the numerical 
calculation. The material properties of TiC and Al2O3 are 
shown in Table 1. 

     The method developed for calculating stress intensity 
factors for two diametrically-opposed edge cracks 
emanating from the inner surface of the FGM cylinder is 
first verified by applying it to a homogeneous cylinder. 
By setting VA = zero or uniform distribution throughout 
the wall thickness of FGM cylinder, one obtains a 
homogeneous cylinder. The stress intensity factor IK  is 
calculated for such a homogeneous cylinder for Ro/Ri = 
2.5. The normalized stress intensity factor 

lpRRKF oiII π2/)/1( 22−=  is compared with that 
available in literatures as shown in Fig. 4. The solid line 
represents the results obtained by the present method 
while the dotted line the results obtained by Wu and 
Janne [12]. It is noted that the results obtained by the 
present method agree well with those obtained by Wu 
and Janne for the entire range of normalized crack length 
l/(Ro – Ri). 
     In order to investigate the effect of nonhomogeneity, 
three different profiles of material distribution in the 
FGM cylinder are considered as shown by the curves I, II 

Material 
Young’s 
Modulus 

(GPa) 

Shear 
Modulus 

(GPa) 

Poisson’s 
Ratio 

CTE 
(/°C) 

TiC 462 194 0.19 7.4×10-6 

Al2O3 380 151 0.26 8.0×10-6 

Table 1 Material properties of TiC and Al2O3 
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and III in Fig. 5. For these prescribed material 
distributions and Ro/Ri = 1.5, Sf = 1.0, normalized stress 
intensity factor FI versus normalized crack length l/(Ro – 
Ri) is plotted in Fig. 6. The results for a homogeneous 
cylinder are also plotted in the same figure. Note that the 
stress intensity factor for the homogeneous cylinder is 
higher than those for FGM cylinders. Further, among the 
three distributions, the stress intensity factor for material 
distribution III is minimum for lower range of crack 
length as the gradient is higher for this distribution near 
the inner surface of the cylinder. 
     Figure 7 exhibits the stress intensity factors as a 
function of the wall thickness of the FGM cylinders. The 
stress intensity factors are obtained for linear distribution 
II in Fig. 5. As the wall thickness increases, the stress 
intensity factor decreases. 
     The effects of strength factor Sf on the stress intensity 
factor are also examined and shown in Fig. 8. The results 
correspond to linear material distribution II in Fig. 5 and 
Ro/Ri = 2.5. The stress intensity factor decreases as the 
strength factor increases. 

     A comparison between the stress intensity factors for 
a single radial edge crack and two diametrically-opposed 
edge cracks is depicted in Fig. 9. The results are obtained 
for Sf = 1.0 and Ro/Ri = 2.5. Note that the stress intensity 
factor is higher in the case of two diametrically-opposed 
cracks for any material distribution. 
 
5. CONCLUSIONS 
     The effect of nonhomogeneity on the stress intensity 
factor for a single radial edge crack and two 
diametrically-opposed edge cracks in an FGM cylinder is 
investigated in this study. It is noted that the stress 
intensity factor is dependent on the material 
nonhomogeneity i.e. the material distribution in the FGM 
cylinder. The following salient points can be noted from 
the numerical results: 

i. The stress intensity factors for FGM cylinder are 
lower than that for a homogeneous cylinder. 

ii. The stress intensity factors for an FGM cylinder 
depend on the material distribution. The stress 
intensity factor is lower for the material 
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distribution with higher gradient. 
iii. The wall thickness of the cylinder and the strength 

factor have the reverse effect on the stress 
intensity factors, i.e. as the wall thickness and 
strength factor increase, the stress intensity factors 
decrease. 

iv. Like a homogeneous cylinder, two 
diametrically-opposed edge cracks are more 
critical than a single radial edge crack in an FGM 
cylinder. 
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