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ABSTRACT
In this paper, we apply the theory developed in the part I [1] to parallel and hybrid manipulators, and
analyze their singularities. We present a general method for obtaining the dual velocity Jacobian matrix
for parallel and hybrid manipulators. This Jacobian is used directly to obtain the principal screws of ω-
basis and h � basis. The motion of the passive joint variables are accounted for in arriving at the equivalent
screws corresponding to the actuated joints, and the determination of configuration-space singularities is a
natural part of the formulation. The gained twists at such a singularity is computed analytically. We also
discuss loss type of singularity, and show that the concept of DOF-partitioning helps us to identify loss in
the translational DOF or rotational DOF separately. The results are illustrated with the help of the 3-RPS
parallel manipulator, and a 6-DOF spatial hybrid manipulator.
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1 INTRODUCTION
Determination of the principal twists of the end-effector

of a hybrid or parallel manipulator is significantly more diffi-
cult than in the case of serial manipulators. The construction
of the velocity Jacobian is difficult due to several reasons.
Firstly, the end-effector motion is affected by the passive and
the active joint movements, and the elimination of the passive
motion in terms of the active variables and their derivatives
is difficult in general. Moreover, the nature of singularities
are more complicated in such manipulators [2]. Due to these
reasons, the use of velocity Jacobians in determining instan-
taneous kinematics of parallel devices is very limited in lit-
erature. However, the statics problem of in-parallel actuated
devices is simple, and traditionally, the wrench-basis have
been used to yield geometric information about the instanta-
neous kinematics using the concept of reciprocity [3]. While
such results are useful, they are not available analytically in
general [4], thus limiting their applicability. In this paper, we
introduce a general method for the derivation of the dual Ja-
cobian of a parallel or hybrid manipulator. At a non-singular
configuration, we determine the passive joint rates, and the
equivalent Jacobian which incorporates their contribution to
the end-effector twists. Using the equivalent dual Jacobian,
we find the principal screws of ω-basis and h � basis directly,

�
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following the formulation in [1].
At a singular configuration, a parallel device may gain

or lose degrees-of-freedom. We derive the conditions for the
same and also determine the twists gained or lost at a singu-
larity. The approach is direct, i.e., we do not make use of the
concept of reciprocal screws, and we are able to derive all the
results analytically.

The paper is organized as follows: in section 2, we de-
scribe the derivation of the equivalent dual Jacobian. In sec-
tion 3, we discuss about singularities leading to gain and loss
of DOF. We present an example of a 3-RPS parallel manip-
ular and a 6-DOF spatial hybrid manipulator in section 4.
Finally, we conclude in section 5.

2 DERIVATION OF THE DUAL JACOBIAN
In this section, we explain a general method of obtain-

ing the dual velocity Jacobian for constrained mechanisms,
such as parallel and hybrid manipulators. The formulation
leads naturally to the identification of singularities leading to
gain of DOF and determination of the corresponding gained
twists1.

1We use the right-invariant or space-fixed twists in this paper.



2.1 Determination of the Passive Joint Rates
In parallel manipulators, closed-loop mechanisms, and

hybrid manipulators, there are one or more passive or un-
actuated joints in addition to the active joints. For a non-
redundant parallel device at a non-singular configuration, it
is possible to obtain m independent holonomic constraints of
the form

η � θ � φ �	� 0 (1)

where m is the number of passive joints, η is a m-vector, θ,
and φ, are n- and m-vectors denoting the actuated and pas-
sive joint variables respectively. The constraints can also be
written in the Pffafian form as

Jηθθ̇ 
 Jηφφ̇ � 0 (2)

where Jηθ and Jηφ denote the Jacobians ∂η
∂θ and ∂η

∂φ respec-
tively. The active joint variables, θ, are functions of time
alone, and at a nonsingular configuration, φ can be deter-
mined uniquely in terms of θ from equation (1) [2]. From
the implicit function theorem, it may be concluded immedi-
ately, that at a non-singular configuration, Jηφ is invertible,
and we can obtain the passive joint rates as

φ̇ ��� J � 1
ηφ Jηθθ̇ (3)

2.2 The Rotational Jacobian (Jeq
ω )

In a serial manipulator, we can express the orientation
of the end-effector explicitly in terms of the active joint vari-
ables, and obtain the Jacobian corresponding to the angular
velocity directly from the same [1]. For parallel and hybrid
manipulators we compute the angular velocity from the lin-
ear velocities of any three non-colinear points P1 � P2 � P3, on
the rigid-body. Denoting the space-fixed angular velocity as
ω, the linear velocities, Ṗi, when expressed in the space-fixed
frame, satisfy the relationships

Ṗi � Ṗ j � ω �� Pi � P j ��� i � j � 1 � 2 � 3 � i �� j

From the three relationships above, we obtain

ω � 1
P1  P2 � P3

��� P3  P1 �	�� Ṗ2 � Ṗ1 �
�� Ṗ3 � Ṗ1 � � P1 � P2 � P1 ��� (5)

We can also express the angular velocity as a linear combi-
nation of the active and passive joint rates as

ω � Jωθθ̇ 
 Jωφφ̇ (6)

where

Jωθ � 1
P1  P2 � P3

��� P3  P1 ���� ∂P2

∂θ
� ∂P1

∂θ
�


�� ∂P3

∂θ
� ∂P1

∂θ
� � P1 � P2 � P1 ���

The matrix Jωφ may be obtained by replacing θ by φ in the
last equation. Substituting the expression for φ̇ from equation
(3) in equation (6), we get

ω � Jωθθ̇ � JωφJ � 1
ηφ Jηθθ̇� Jeq

ω θ̇

where Jeq
ω , the equivalent Jacobian has the expression

Jeq
ω � Jωθ � JωφJ � 1

ηφ Jηθ (7)

2.3 The Translational Jacobian(Jeq
v )

The Jacobian corresponding to the translational velocity
is obtained from v ��� ḋ 
 d  ω � , (see equation � 5 � in [1])
where d is a chosen reference point on the rigid-body, and
v is the linear velocity of a point on the rigid-body which is
instantaneously coincident with the origin of the fixed frame
[5]. We express d in the space-fixed frame in terms of the
configuration variables θ and φ, and hence ḋ � ∂d

∂θ θ̇ 
 ∂d
∂φ φ̇.

Using the expression of ω from equation (6), we get the ith
column of the matrix Jvθ as

� Jvθ � i ��� ∂d
∂θ
� i 
 d �� Jωθ � i (8)

where � Jωθ � i ��� ∂d
∂θ � i denote the ith column of Jωθ � ∂d

∂θ respec-
tively. Similarly, we obtain the matrix Jvφ, by replacing θ
by φ in equation (8). Finally, using equation (3) to account
for the motion of the passive joints, we get the equivalent
Jacobian as

Jeq
v � Jvθ � JvφJ � 1

ηφ Jηθ (9)

2.4 The Dual Jacobian
The dual Jacobian, mapping the active joint rates θ̇ to

the end-effector twists can now be written by composing the
Jacobians corresponding to the rotational and translational
parts:

Ĵeq ��� Jeq
ω 
 εJeq

v � (10)

The resultant twists can now be expressed in terms Ĵ, and the
columns of Ĵ may be interpreted as the equivalent screws as
follows2:

V̂ � Ĵeqθ̇ � n

∑
i � 1

$̂iθ̇i (11)

This method allows us to compute the Jacobian matrices
symbolically. Moreover, since we avoid using any particular
parameterization of so � 3 � in obtaining the Jacobian matrices,
the only possibility of encountering a singularity in the for-
mulation is when detJηφ � 0. This case is discussed in detail
in the next section.

2$̂i differs from screws in one respect, that the norm of their real parts
need not equal unity. It is more precise to consider $̂iθ̇i as the input twist
corresponding to the ith active joint.
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3 ANALYSIS OF SINGULARITIES
In this section, we discuss two types of singularities,

leading to gain and loss of DOF respectively. It is known
that serial manipulators can show only loss of DOF, while
parallel and hybrid device can show both gain and loss type
of singularity [6].

3.1 Gain Type of Singularity
As explained in the previous section, a parallel device

gains one or more degrees-of-freedom in the configuration
space when one of the constraint Jacobians, Jηφ, loses rank.
The gain of DOF equals the nullity of Jηφ. The gained pas-
sive motions lie in the nullspace of Jηφ, and may be obtained
by solving the equation (see, for example, [7])

Jηφφ̇i � 0 � i � 1 ��������� nullity � Jηφ � (12)

The effect of this gain is that the manipulator end-effector
can now twist about one or more screws even with all the
actuators locked. These twists are obtained by setting θ̇ � 0
in equation (11):

V̂ g
i � Jωφφ̇i 
 εJvφφ̇i ��� Jωφ 
 εJvφ � φ̇i (13)

We can obtain the gained screws $̂g
i by normalizing V̂ g

i .
If the nullity of Jηφ is more than one, the gained twists

will be a linear combination of the gained screws. Any
gained twist may be written as

V̂ g � nullity � Jηφ �
∑
i � 1

ci$̂
g
i � ci  ℜ (14)

Equation (14) is comparable to equation (11), the gained
screws replacing the input screws and the arbitrary coeffi-
cients ci taking the place of θ̇i. Under a normalization con-

straint, ∑
nullity � Jηφ �
i � 1 c2

i � 1 (similar to the unit-speed constraint
on θ̇), the principal twists in the subspace of se � 3 � spanned
by the gained screws can be obtained analytically following
the formulation mentioned in [1]. This is possible since we
need to solve at the most a cubic equation.

3.2 Loss Type of Singularity
The loss kind of singularity is said to occur when the

manipulator end-effector fails to twist about certain screws in
spite of full actuation. This results in the loss of one or more
degrees-of freedom of the end-effector [2]. In our formula-
tion, we treat the rotational degrees-of-freedom as decoupled
from purely translational degrees-of-freedom, and hence the
loss may occur in either rotational or translational DOF. We
first consider loss of rotational DOF.
Loss of Rotational DOF
The manipulator end-effector has 1 � 2 or 3 rotational
degrees-of-freedom depending upon the number of non-zero
eigenvalues ĝ has at a non-singular configuration. If at a

singular configuration, m additional eigenvalues vanish3,
then we say that the manipulator has lost m rotational
degrees-of-freedom. It may be noted that the corresponding
pitch also vanishes, and hence the corresponding twist can
reduce to a pure translation in the nullspace of Ĵeq at that
configuration. We look at the possibilities on a case by case
basis.

One-degree-of-freedom:
In this case, the principal screw reduces to a null vector,
0 
 ε0, unless the original DOF was translational (as in a
P-joint), in which case there is no loss of rotational DOF
possible.

Two-degrees-of-freedom:
From the set of equations � 19 � 20 � in [1], it can be seen that
only one of the λ̂s (λ̂2 in particular) can vanish, under the
condition sin2 φ12 � 0. The other eigenvalue can be obtained
from equation � 19 � in [1] as λ̂1 � 2 � 1 
 ε � hω

1 
 hω
2 ��� .

The two principal twists collapse to V̂ ω
1 � 1!

2
� $̂1 
 $̂2 �

which gives the resultant rotational DOF in this case, and
V̂ ω

2 � 1!
2
� $̂1 � $̂2 � , now forms the left nullspace of Ĵeq,

signifying a translatory DOF in addition to the residual
rotational DOF.

Three-degrees-of-freedom:
In this case, there may be loss of one or two angular degrees-
of-freedom, the conditions of the same are found from
equation � 22 � in [1] as c2

12 
 c2
23 
 c2

31 � 2c12c23c31 � 1 � 0 and
c2

12 
 c2
23 
 c2

31 � 2c12c23c31 � 1 � 0 �"� 3 � c2
12 � c2

23 � c2
31 �

respectively. As in the case of two-degrees-of-freedom
rigid-body motion, the non-zero roots may be computed
from the same equation, which reduces to a quadratic
and a linear equation in λ in the two cases respectively.
The eigenvectors of g can be computed symbolically, and
therefrom the principal twists in the columnspace and null
space of Ĵeq can be obtained. It may be noted here that the
loss of one or two rotational DOF results in those many
principal twists being pushed from the column space into
the left nullspace of Ĵeq, which has interesting consequences
when DOF is greater than 3.

Degrees-of-freedom(n) # 3:
The treatment in this case follows exactly the case of three-
degrees-of-freedom. We need to consider equation � 25 � in
[1] instead of equation � 22 � in [1]. The conditions for loss of
one or two rotational DOF are an � 3 � 0, and an � 3 � 0 � an � 2

respectively.
Loss of Translational DOF:
The number of pure translational degrees-of-freedom equal
the number of linearly independent pure dual vectors in the
left null space of Ĵeq and they span the space of pure transla-
tional velocities of the rigid body. We write their dual parts
as the columns of a 3  m real matrix, B, and let the rank of
B be r � r $ 3 � . At a singularity leading to loss of translational
DOF, the rank of B reduces by 1, 2 or 3. It may be noted

3m can be either 1 or 2. All the three eigenvalues can vanish only for a
purely Cartesian manipulator, whose analysis can be done much more con-
veniently by looking at its linear velocity distribution in ℜ3.
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Figure 1. The 3-RPS Parallel Manipulator

that loss of rotational motion also leads to the addition of a
column to B, but since the rank of B is limited to 3, the de-
generacy of rotational motion does not lead to an additional
translational DOF if rank of B is already 3.

4 ILLUSTRATIVE EXAMPLES
In this section, we illustrate above developed theory by

an example of a 3-RPS parallel manipulator, and a 6-DOF
hybrid gripper.

4.1 3-RPS Parallel Manipulator
Geometry of the 3-RPS
The 3-RPS is a platform-type fully in-parallel actuated de-
vice (shown in figure 1). The active and passive variables in
this case are given by θ �%� l1 � l2 � l3 � T and φ �&� θ1 � θ2 � θ3 � T
respectively. The top and bottom platforms are taken to
be equilateral triangles with sides a and b respectively, and
we assume a ��' 3 ( 2, b � 2a. The constraint equations,
ηk � k � 1 � 2 � 3, are obtained from the fact that the distance
between the spherical joints, Pi, equal the side of the top plat-
form:

)
Pi � P j

) � a2 � i � j � 1 � 2 � 3 � i �� j (15)

The reference point on the moving platform is chosen as its
centroid:

d ��� x � y � z � T � 1
3
� P1 
 P2 
 P3 �

Results of the ω-basis
At a non-singular configuration defined by l1 � 1, l2 �
2 ( 3, l3 � 3 ( 4, and corresponding passive variables θ1 �
0 � 878516rad, θ2 � 0 � 905239rad and θ3 � 0 � 120906rad, the
dual eigen values of ĝ are are computed analytically, yield-

ing the numerical values

λ̂1 � 3 � 92612 
 ε ��� 0 � 91996 �
λ̂2 � 1 � 87034 
 ε � 0 � 44710 �
λ̂3 � 0 
 ε � 0 �

The three principal pitches in the ω-basis are given by

hω
1 ��� 0 � 117159 � hω

2 � 0 � 119524 � hω
3 � ∞

respectively. The principal twists, at this configuration, are
given by

V̂ ω
1 ��� 1 � 61698 ��� 1 � 11205 � 0 � 27354 � T
 ε � 0 � 59693 � 1 � 14580 ��� 0 � 55239 � T

V̂ ω
2 ����� 0 � 63533 ��� 1 � 06544 ��� 0 � 57580 � T
 ε � 0 � 13730 ��� 0 � 28080 ��� 0 � 02015 � T

V̂ ω
3 ��� 0 � 0 � 0 � T 
 ε � 0 � 0 � 0 � 90320 � T

The DOF decoupling is apparent in the purely translational
nature of the third principal twist. Intuitively, the existence
of one pure translation mode can be reasoned from the fact
that the rotary joint axes in the base are in a plane and the
top platform can be made to translate parallel to the Z axis,
without any angular motion, by changing the leg lengths. The
strength of our approach is that we can analytically capture
this partitioning of DOF.
Results of the h � basis
The principal screws of the h � basis are computed as

V̂ h
1 ��� 1 � 10500 ��� 1 � 35959 � 0 � T
 ε � 0 � 55638 � 0 � 85062 ��� 0 � 80373 � T

V̂ h
2 ��� 9 � 73597 � 7 � 91281 � 6 � 20082 � T  10 � 9
 ε � 0 � 5 � 25180 ��� 0 � 90320  109 � T  10 � 9

V̂ h
3 ��� 9 � 73597 � 7 � 91281 � 6 � 20082 � T  10 � 9
 ε � 0 � 5 � 25180 � 0 � 90320  109 � T  10 � 9

The principal pitches are computed as

hh
1 ��� 0 � 17648 � hh

2 ��� 2 � 85962  107 � hh
3 � 2 � 85962  107

respectively. It may be noted that hh
3 �*� hh

2 + ∞, and)
V̂ h

2

) � ) V̂ h
3

) + 0, even as g has rank 2 as seen in equation
(17). By observation, the direction of the pure translation
can be obtained by deducting V̂ h

2 from V̂ h
3 . It may be noted

that we get � 0 � 0 � 0 � T 
 ε � 0 � 0 � 2  0 � 9032 � which is consis-
tent with the translational velocity obtained in ω-basis. The
advantage of exact analytical computation, as opposed to nu-
merical computation, is also clearly seen from the values of
the principal screws in h � basis. One can observe that some
entries are O � 1 � whereas others are O � 10 � 9 � and most nu-
merical computations will round them off to 0. If they are
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Table 1. DH PARAMETERS OF THE jth FINGER

i αi � 1 ai � 1 di θi

1 0 0 0 θ j

2 π
2 l j1 0 ψ j

3 0 l j2 0 φ j

4 0 l j3 0 0

rounded off to zero, then we will get two translatory modes
which is incorrect.
Singular Configuration (Gain)
The 3-RPS gains a DOF when one of its legs lie in the plane
of the top platform [8]. We consider the case when the first
leg is in such a configuration, and l2 � l3, θ2 � θ3. The
gained passive velocity is obtained analytically as

φ̇ ��� 1 � 0 � 0 � T
and the corresponding gained twist is obtained from equation
(13) as

V̂ g � ,
0 ��� 2 ' 3l1

3a
� 0 - T


 ε . 2l1
3a / 2a2 � ab � b2 
 3l1 � l1 
 ' 3a �0� 0 � l1

3 1 T

Following [8], it is intuitively clear that the gained passive
motion corresponds to a pure rotation of the top platform
about the axis in the plane of the top platform, perpendicular
to the first leg, i.e., the Y axis. Correspondingly, we obtain
the gained twist as one with zero pitch, indicating a rotation
about the Y axis.

4.2 6-DOF Spatial Gripper
Geometry of the 6-DOF Gripper
The 6-DOF hybrid spatial manipulator, shown in figure 2,
models a three-fingered gripper with the contact points mod-
eled as spherical joints. The DH parameters of the jth finger
are given in Table1. The first two of the joints in each
finger are actuated, and the last link is passive. Hence the
active variable is given by θ �"� θ1 � θ2 � θ3 � ψ1 � ψ2 � ψ3 � T , and
the passive variable given by φ �2� φ1 � φ2 � φ3 � T . The individ-
ual fingers have the same architecture, and their link-lengths
are taken such that l1 � 2l2 � 4l3 � 1. The other architec-
tural parameters are chosen as follows(see figure 2): d � 1 ( 2,
h �3' 3 ( 2, s �4' 3 ( 2. The third finger is rotated about the Y
axis through an angle of π ( 4. The constraint equations are
formed as in the previous example, i.e., ηk � k � 1 � 2 � 3 has the
form: )

pi � p j
) � s2 � i � j � 1 � 2 � 3 � i �� j (17)

Non-Singular Configuration
At a non-singular configuration given by θ �

l13
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Figure 2. The Spatial 3-fingered Gripper

� 0 � 2 � 0 � 1 � 0 � 3 ��� 1 �5��� 1 � 2 � 1 � T , and corresponding
φ �6� 0 � 3679 � 1 � 4548 � 0 � 8831 � T, the dual eigenvalues of
ĝ are computed as

λ̂1 � 0 � 03 
 ε � 0 � 09 �
λ̂2 � 2 � 10 
 ε � 5 � 45 �
λ̂3 � 1496 � 45 
 ε � 1070 � 41 �

The other three eigenvalues are of the form 0 
 ε0. The prin-
cipal pitches are given by

hω
1 � 1 � 37 � hω

2 � 1 � 30 � hω
3 � 0 � 36 � hω

4 � hω
5 � hω

6 � ∞

The principal twists in ω-basis, at this configuration, is given
by

V̂ ω
1 ��� 14 � 56 � 35 � 28 � 6 � 24 � T 
 ε � 15 � 16 � 7 � 43 � 8 � 29 � T

V̂ ω
2 ���7� 1 � 34 � 0 � 52 � 0 � 17 � T 
 ε �7� 2 � 04 ��� 0 � 03 � 0 � 03 � T

V̂ ω
3 ��� 0 � 01 ��� 0 � 04 � 0 � 18 � T 
 ε �7� 0 � 36 ��� 0 � 19 � 0 � 23 � T

V̂ ω
4 ��� 0 � 0 � 0 � T 
 ε ��� 0 � 09 � 0 � 77 � 0 � 11 � T

V̂ ω
5 ��� 0 � 0 � 0 � T 
 ε ��� 0 � 03 ��� 0 � 49 � 0 � 06 � T

V̂ ω
6 ��� 0 � 0 � 0 � T 
 ε � 0 � 19 ��� 0 � 07 � 0 � 27 � T

Singular Configuration, Loss Type We now consider
the singular configuration where all the three fingers are
fully stretched [6]. The configuration is defined by θ �� 0 � 0500 ��� 0 � 0500 � 0 ��� 1 � 0998 ��� 1 � 0998 � 1 � 0026 � T and φ �� 0 � 0 � 0 ��� T . We expect a loss of three degrees-of-freedom
since all the three fingers are in singular configuration, and
accordingly we find that the pure dual principal twists vanish
identically, signifying the loss of three translational degrees
of freedom. The other three principal twists are given as

V̂ ω
1 ���7� 1 � 79 ��� 27 � 73 � 0 � 05 � T 
 ε � 12 � 01 ��� 0 � 01 ��� 8 � 63 � T

V̂ ω
2 ��� 12 � 25 ��� 0 � 79 ��� 0 � 36 � T 
 ε � 1 � 75 � 0 � 04 ��� 1 � 26 � T

V̂ ω
3 ��� 0 � 0001 � 0 � 0 � 0050 � T 
 ε ��� 0 � 00 ��� 0 � 76 ��� 0 � 00 � T
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Singular Configuration, Gain Type
In this case also, there is a singularity leading to gain of

a single DOF when one of the passive links lie in the plane
of the moving platform. We obtain such a configuration at
θ �8� 0 � 0462 ��� 0 � 0462 � 0 ��� 0 � 4732 ��� 0 � 4732 � 1 � 0472 � T, φ ��7� 1 � 0761 ��� 1 � 0761 � 1 � 0472 � T . The corresponding gained
passive motion in the nullspace of Jηφ is obtained as� 0 � 0 � 1 � T , indicating that φ3 can have an instantaneous varia-
tion even with actuators locked. The gained twist is essen-
tially the 3rd column of Jωφ 
 εJvφ, whose analytical ex-
pression is of the form � 0 � ωy � 0 � T 
 ε � vx � 0 � vz � T . This in-
dicates a pure rotation about the Y axis, which corrobo-
rates with the intuitive motion of the platform with the in-
stantaneous motion in φ3 alone. In particular, for the cho-
sen architecture and configuration, the gained twist is V̂ g �� 0 � 1 ( 3 � 0 � T 
 ε �7� 0 � 1294 � 0 � 0 � 4830 � T .

It may be noted that as in the case of the PUMA 560
in [1], all the results for the 6-DOF gripper is available only
in ω-basis, for reasons explained previously. The principal
twists in ω-basis allows us to find all possible finite-pitch,
as well as pure translational motions analytically at a non-
singular configuration, and also detect singularities, deter-
mine lost and gained twists at a singularity. This is a sig-
nificant improvement over the classical h � basis, where no
information can be extracted for 6-DOF rigid-body motion.

5 CONCLUSION
In this paper, we have presented a method of deriving the

dual Jacobian of the end-effector of a parallel or hybrid de-
vice analytically. The Jacobian is used in determining the in-
stantaneous kinematics of such constrained motion, follow-
ing the algebraic formulation presented in part I [1]. We also
determine in closed form the gained and lost twists at a sin-
gularity. The results are illustrated with the help of a 3-RPS
parallel manipulator and a 6-DOF hybrid spatial gripper.
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