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1. INTRODUCTION 
     Most of the grasslands of Japan and other countries 
are in hilly areas where farm tractors perform various 
task. However, working on hilly terrain can cause 
discomfort to the operator, due to the effects on body 
alignment. This also increases the fatigue of the operator 
and thereby decreases the work efficiency with time. 
Although much research has been conducted on 
automatic guidance system for the farm tractor, most is 
concerned with flatland [1], [2], [3], [4]. Bell [5] devised 
an automatic tractor guidance system using a kinematic 
model. A biased estimation method was incorporated 
into the control software to compensate the effect of 
slope on the vehicle motion [6]. This study proposed a 
new approach of automatic tractor guidance system for 
the navigation along rectangular path on sloped terrain. 
The objective of this paper is to design and to develop an 
autonomous tractor that can precisely travel along the 
rectangular path on sloped terrain. Emphasis is given on 
the:  1) formulation of vehicle model for sloped terrain, 
and 2) development of a navigation planner for the 
rectangular path. 
 
2. FORMULATION OF THE VEHICLE MODEL 
FOR SLOPE TERRAIN 
2.1 Structure of Vehicle Model 
     A bicycle model of tractor with slope influence is 
shown in Fig. 1. Whenever an agricultural 
wheeled-vehicle runs on sloping land, external 
disturbances such as gravitation force pull it to the  

 

downhill direction, which is strongly nonlinear in the 
vehicle dynamics. Consequently it is very difficult to 
formulate a mathematics based vehicle model to express 
the vehicle motion on sloped terrain. Recently there has 
been an increase in the number of applications of neural 
network (NN) in various engineering and biological 
problems [7], [8]. Therefore, a NN vehicle model is 
designed to express the input-output relationship of 
vehicle motion on sloping land. The adjusted 
interconnecting weights of the neurons in NN can 
include all of the effective elements such as slippage due 
to gravity, uneven condition of slope and other external 
disturbances. 
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     The architecture of the neurons (later denoted as 
units) of this model is 6-6-6-3, which has 6 input and 3 
output variables together with two hidden layers of 6 
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units each (Fig. 2). The input vector is a combination of 
the control vector Uk, and state vector Zk, and the output 
vector is ξk+1, which is also known as target vector.  
where,  

T
kkkU ),( αα ∆=       (1)         

T
kkkkk VyVxZ ),,,( θω=    (2)   

T
kkkk VyVx ),,( 1111 ++++ = ωξ    (3) 

The control vector Uk is a function of steering angle α 
and rate of steering kα∆ . The coordinate XY (Fig. 1) is 
the earth fixed coordinate system and xy is the vehicle 
body coordinate system. The elements of vector Zk are Vx, 
Vy, kθ and kω . The output vector represents the vehicle 
state after each 0.5 seconds (∆t). The output is 
determined by both the current inputs and their previous 
outputs. For this reason the network exhibits properties 
very similar to short-term memory in humans. 
 
2.2 Data Acquisition Test of Training Pairs for 
the NN Model 
     Data acquisition test for the NN model was conducted 
on 0°, 5°, 10° and 15° sloped terrains. For each sloping 
land a skilled human operator operated the test tractor 
along a predetermined sinusoidal path, which was traced 
on the ground by means of a rope and pegs (Fig. 3). The 
directions of the sinusoidal paths were along the contour 
lines. The vehicle forward velocity was 0.5 m/s. After 
every 0.5 sec interval, the position of vehicle center of 
gravity, heading angle, steering angle and engine speed 
were recorded by different sensors.  

      Due to the limit of threshold function [9], any value 
beyond the range 0 ~ 1 cannot be used in the NN model. 
Therefore, all the variable values were normalized to the 
range between 0 and 1 to make them usable for the 
network.  
 
2.3 Training of NN Model by BP Algorithm 
    To train up the NN vehicle model, pairing of each 
input vector with a target vector representing the desired 
output is essential, which are called training pair [9]. The 

model was trained by back propagation (BP) algorithm. 
A set of 90 training pairs was used for this purpose. The 
training was accomplished by sequentially applying the 
input vector. In each iteration step of the training process, 
errors were calculated from the difference of desired 
output. Accordingly the values of the network’s weight 
coefficients were recalculated using the delta rule [9] and 
were fed back to the whole network. The training process 
continued until the error for the entire training set was at 
an acceptably low level. The steepest decent algorithm 
was used to minimize the errors. There is no assurance 
that the model will be properly trained at each low level 
of error. Therefore, after the end of each trial of training, 
a simulation was done with the trained model in order to 
check the accuracy of training achieved. Then the 
simulated sinusoidal trajectory obtained from the output 
of trained model was compared with the actual trajectory. 
The training and checking procedure continued until the 
difference between the actual and simulated trajectories 
reached to a reasonable level of accuracy. 
 
3 RECTANGULAR PATH PLANNING 
     When a tractor runs from path 1 to 2 (Fig. 4), the 
longitudinal axis of the tractor body rotates 90 degree 
from the x-axis. Therefore, to develop a navigation 
planner for rectangular path, it is necessary to transform 

the coordinate according to the change of path directions. 
Figure 5 shows the rotation of the coordinate axis. An 
arbitrary point was chosen as the origin O and the 
vehicle-positioning sensor ‘Total Station’ is set at another 
point S. The line connecting these two points S and O 

was set as the X-axis and considered as a baseline. Then 
the heading angle of the tractor was initialized to zero 
along the baseline. The rotational coordinate for the 
adjacent path i and i+1 can be expressed as: 
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Fig. 5. Rotation of the coordinate axis
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where X, Y are the earth-fixed coordinate; i is the path 
number ( 4,3,2,1=i ); and Xi, Yi are the new coordinates 
of path i. Here the right most term of Eq. (4) is a vector 
and is defined as follows: 
( ) ( ) ( ) ( ) TTTTTTTT WyxWLyxLyxyx )0,(ˆ,ˆ,),(ˆ,ˆ,),0(ˆ,ˆ,)0,0(ˆ,ˆ 44332211 ====

where, L is the length and W is the width of the 
rectangular path. 
 
4 NAVIGATION PLANNER 
4.1 Feedback Control for Rectilinear Motion 
     When a human operator drives a vehicle, for each 
lateral and heading deviation from the desired path, he 
makes necessary correction of the steering angle and 
velocity (control values). The accuracy of the correction 
depends on the skill ness of the operator. In the same way, 
it is therefore, important for an autonomous vehicle to 
design a control rule, which can make online decision 
about the appropriate control values like a skill human 
operator. For this purpose the optimal control rule is 
designed. Mathematical statements of the optimal control 
problem consists of: (1) the system to be controlled, 
which is described by the NN vehicle model; (2) system 
constraints and possible alternatives, which are described 
with steering angle α and state variables; (3) the task to 
be accomplished is to run along the contour line on the 
slope; (4) the criterion for judging the optimal 
performance is a quadratic form cost function J, which is 
defined in Eq. (5). The control input u and state vector X , 
which are defined in Eqs. (6) and (7) respectively. 
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where k1, k3 and k4 are weights, whose values were 
determined by simulation. 
 
4.2 Searching Optimum Control Input by GA 
     Genetic Algorithm (GA) was applied to search the 
optimum steering angle for each specific range of 
deviations. In the optimization process, for a specific 
slope, steering angle α depends on lateral displacement 
(offset) YG and heading angle deviation θ, which can be 
shown by Eq. (10): 
αφ=ƒ(YG,θ)                  (10) 
The subscript φ indicates the degree of slope for which 
the steering will be optimized. The number of individuals 
or strings of the population used in this searching 
algorithm was 50. In optimization each set of 0.03 m 
lateral deviation and 3° heading errors were considered 
as a feature (gene) of the individual, and different 
steering angles, within the range of ±20°, were directly 
coded as the feature value (allele) for each feature.. Total 
number of features was 24. Initially the feature values 
were randomly selected for all 24 features. Crossover 
and mutation rates were 0.6 and 0.05 respectively. 

     A 20 m long contour line was considered as the target 
linear path to follow in the optimization process. In each 
step, for one set of offset and heading deviation, GA was 
used to find the optimum steering angle. The flowchart of 

steering optimization by GA is shown in Fig. 6. Equation 
(11) was used to determine the fitness of individuals. 

( ) 1−+= PJf                      (11)            
where, P is a safety factor to avoid infinity when the 
value of J will be 0.  
     The optimal steering values were arranged in a matrix 
form table, introduced as reference table. A sample 
reference table for 15° sloping ground is shown in Table 
1. Similar tables were also prepared for 0°, 5° and 10° 
sloped terrains. 
 
Table 1. A sample reference table for 15° sloped terrain 

 
4.3 Neural Network based Steering Controller 
     The reference tables directly can be used to navigate 
the vehicle on sloping ground, but it has some extent of 
limitation. For certain range of offset and heading 
deviation on each specific slope, only one steering value 
is used in the reference table. In reality optimal steering 
value varies for slight variation in either of the offset or 
heading deviation. Another limitation is that each 
reference table can provide optimal control value for 
those specific inclinations, on which the vehicle model 
was trained, like 0°, 5°, 10° and 15° sloped terrains. 
There is no steering information about the intermediate 
slopes. Therefore, a generalization of the optimal 
steering is devised using neural network. The multi-layer 
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neural-network steering controller has three input and 
one output variables as shown in Fig. 7. The training 
pairs were prepared from the reference tables 0°, 5°, 10° 

and 15° sloped terrains. Back-propagation algorithm was 
used to train the network. For online navigation of the 
vehicle, appropriate optimal steering value α can be 
obtained from this network output on the basis of input 
vales, like degree of slope φ, vehicle offset Y, and 
heading deviation θ. A block diagram of the closed-loop 
control system is shown in Fig. 8.  

      When the vehicle travels along the contour line, 
uphill steering effort is larger than that of the downhill 
steering as the gravitational force pulls the tires towards 
the downhill. Hence it was assumed that for the vehicle 
motion along uphill and downhill the vehicle offset and 
heading deviation in left and right side of the path are 
symmetrical. Therefore, the optimal steering angles for 
flat land (0° slope) were used to guide the tractor along 
uphill and downhill.  
 
4.3 Feedforward Control for the Turning Motion 
     It is quite difficult to accomplish the feedback control 
method in the guidance of a vehicle along curved path on 
slope. Therefore, feedforward control method was 
applied to guide the tractor along four quarter-turns of the 
rectangular path. The turning process of the vehicle is 
shown in Fig. 9. Two parameters determine the switching 

from feedback to feedforward control. The distance λ 
determines the initial time τ1 and the heading angle ψ 
determines the final time τ2 in the feedforward control.  
The values of λ and ψ were determined by trial and error 
method during supplementary field test. When the tractor 
reaches the predetermined point (XG(τ1), YG (τ1)) as 
shown in Fig. 9, the control method switches over from 
feedback to feedforward. The state vector at this initial 
time and final time can be expressed by Eq. (12) and 
(13).  
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 The steering angle α(τ1) begins to increase and when it 
reaches the maximum (αmax), it remains constant until the 
heading angle of the tractor reaches a predetermined 
turning angle ψ at time τ2. Just after reaching this turning 
limit, the feedforward control switches over to the 
feedback control for the next path. Therefore, the final 
condition of the feedforward control in the quarter-turn 
becomes the initial condition of feedback control for the 
next linear path.  
 
5 INSTRUMENTATION AND FIELD TEST 
5.1 Instrumentation 
     The test tractor used in this experiment was a 4WD 18 
kW four-wheel drive Mitsubishi MT2501D model. Total 
mass of the tractor was 1125 kg, wheelbase was 1.595 m 
and axle was 1.31 m. High lug tire was used for the test. 
The tractor was equipped with a 100 MHz Pentium PC as 
the sensor-signal processor and steering control unit. It 
was also equipped with a DC motor as the steering 
actuator, a potentiometer to measure the steering angles 
and a fiber optic gyroscope (FOG) to measure the 
heading angles. The tested tractor and instrumentation is 
shown in Fig. 10. The equipment used to measure the 
vehicle positions was a Total Station of Leica TCA1105 
model. A prism, as a pair of Total Station, was mounted 
on the tractor rear. Two SS wireless modems were used 
to transmit the signals of the tractor-position from the 
Total Station to the PC. To get precise-control on the 
vehicle, 0.5 sec was decided as the data transfer time 
interval. 

Fig. 7. NN steering controller for vehicle navigation on slope
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5.2 Test Field and Experimental Conditions 
     Field test on automatic tractor guidance system was 
conducted on a meadow at the hilly areas of the Iwate 
University Omyojin Research Farm. The surface of the 
meadow was undulating and covered with grass. The test 
run was performed along a 30x15 m rectangular path. 
The travel direction of the rectilinear path 1 was along a 
contour line of 10° average slope and that of the path 3 
was along a contour line of 20° average slope (Fig. 4). 
The tractor velocity was 0.5 m/s throughout the test.  
 
6 RESULTS AND DISCUSSION 
     Figures 11 and 12 show the trajectory of the 
autonomous travel along the rectangular path on sloped 
terrain  in  2-D  and 3-D  respectively. Path 1 and 3  were 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Autonomous travel trajectory with field topography in 3D 
 
assumed as the contour lines. From Fig. 12 the elevation 
at the starting point of path 1was 0.427 m, and at the 
endpoint was –0.297 m. The elevation at the starting 
point of path 3 was 2.67 m, and at the endpoint was 4.22 
m. The average land-inclination at path 1 was 10° and at 
path 3 was 20°. Figure 11 shows that in spite of the 
variable land inclination, the autonomous travel 
trajectory formed nearly a smooth rectangular path. As 
shown in Table 2, the mean and standard deviation of the 
lateral displacement for these two paths were very close 
to each other (within 0.023 m). But due to the effect of 
the gravitational force, the mean and standard deviation 
of the heading angle for downhill motion were a bit more 
(within 2.73°) than that of for uphill motion.  
     Table 2  also  shows  that  the  average of the mean and 
standard deviations of the offset for the four rectilinear 
motions were only 0.044 m and 0.049 m, and that of the 
 
 

heading angles were 3.053° and 2.47° respectively, 
which validates the success of the guidance system. 
Figure 11 also shows that the convergence of the quarter 
turns was fairly good. 
 
Table 2. Autonomous traveling performances for the rectilinear 
             motions of rectangular path 
 

 Mean 
Lateral  

deviation 
[m] 

Standard 
deviation 
of lateral 
deviation 

[m] 

Mean 
heading 
angle [°] 

Standard 
deviation 

of heading 
angle [°] 

Path 1 0.027 0.035 3.09 1.25 
Path 2 0.034 0.052 1.85 2.86 
Path 3 0.050 0.049 2.69 1.84 
Path 4 0.065 0.054 4.58 3.94 

Average 0.044 0.049 3.053 2.47 
 
7 CONCLUSION 
     An automatic tractor guidance system was developed 
to navigate the tractor along rectangular path on sloped 
terrain. A NN vehicle model was formulated to express 
the input-output relationship of the vehicle dynamics for 
sloping environment. An optimal control law was 
designed and developed. Using GA with the help of 
control rule optimal control value (steering angle) for 
each specific range of lateral deviation and heading 
errors was determined. A NN based steering controller 
was finally devised for online navigation of the vehicle. 
The controller was successfully applied for guiding the 
tractor along rectilinear contour paths and also along 
uphill and downhill. A feedforward steering controller 
was developed for the tractor-motion in quarter-turn. 
Two control methods were compounded to navigate the 
tractor along the turns and rectilinear portions of the 
rectangular path. Despite the variations in 
land-inclination, the developed guidance system was 
successful to guide the tractor along the rectangular path 
on sloped terrain. 
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NOMENCLATURE  
Symbol Meaning Unit 
θ Heading angle (deg) 
ω Rate of change of heading angle (deg/sec) 
ξ Output vector - 
λ Distance (m) 
τ Time (sec) 
ψ Predetermined turning angle (deg) 
φ Slope angle (deg) 
i Path number - 
J Cost function - 
L Length of rectangular path (m) 
P Safety factor - 
U Control vector - 
Vx Velocity component of along 

longitudinal axis of tractor body 
(m/s) 

Vy Velocity component perpendi- 
cular to tractor body 

(m/s) 

W Width of rectangular path (m) 
X X-axis of earth fixed coordinate (m) 
x x-axis, along vehicle body (m) 
Y Y-axis of earth fixed coordinate (m) 
y y-axis, perpendicular to vehicle 

body 
(m) 

Z State vector - 
α Steering angle (deg) 
 


