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1. INTRODUCTION  
   As far as the peculiar stress induced martensitic 
transformations (SIMT) is concerned, the superelastic 
shape memory alloy (SMA) can recover too large strains 
upon unloading unlike the traditional engineering 
materials [1-8]. Consequently, superelastic SMA is 
typically used as a slender beam to undergo large 
deflections in the modern adaptive/smart structures. For 
such cases, a theoretical calculation based on linear or 
small deflection theory is likely to yield inaccurate 
results particularly for slender SMA beams at high 
intensity loads. The large deflection theory, on the other 
hand, invariably involves non-linear equations having no 
closed form solutions. That in turn leads to the different 
numerical techniques for solving those equations.  
   Study on superelastic SMA beam has been limited to 
small deflection theory [8]. Though large deflection 
analysis on slender superelastic SMA column has been 
carried out by Rahman [1], exclusive study on large 
deflection analysis on superelastic SMA beam is not 
reported in the literature. Observing these facts, a 
computer code based on 'C' has been developed using the 
finite difference technique (to solve boundary value 
problems) and also the Runge-Kutta technique (to solve 
initial value problems), for accurately analyzing the 
behaviors of the superelastic SMA beams. The 
load-deformation curves of the beams have been  

 
predicted by using the developed code exploiting the 
nonlinear as well as the classical linear theories of the 
beams.  

  
   According to Fig. 1, for the case of small deflection 
(linear) theory, equations of the elastic curve of a beam  
are given as , 
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   Where, ρ and M are the radius of curvature and the 
bending moment, respectively. The product EI (flexural 
rigidity) is usually constant along the beam length . 
Equation (i) is linear and applied for sufficiently small 
deflection of the beams. From differential calculus, 
however, for the exact value of 1/ρ , the equation will 
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when dy/dx is very small, its square is negligible 
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compared to unity, and hence equation (i) becomes true. 
But as the value of dy/dx becomes larger it becomes 
necessary to imply equation (ii) for the determination of 
different design parameters particularly, the deflection 
and stresses of the beams. 
 

 
Fig.1 Parameters of the beam’s geometry. 
 
   In general practice, analytical and exact solutions of 
beam deflection are desirable because of their ease of use 
and the insight they provide to designers. Specific 
geometric effects can be ascertained from these solutions. 
Especially for large deflections, however, numerical 
techniques such as – finite element analysis, boundary 
element analysis and finite deference analysis can be 
more accurate in predicting deflection behavior.  
 
   The work in this paper takes care of the effects of large 
deflections by numerical analysis. The analytical 
expression (based on small deflection theory) is 
compared to both numerical analysis results and 
experimental results for different end conditions of 
beams.   

2. NUMERICAL SOLUTIONS  
   Solution were carried out, considering two different 
end conditions. Depending on the available boundary 
conditions they were solved either by Finite Difference 
Technique (for boundary value problem) or by Runge 
Kutta Method (for initial value problem). Experiments 
were performed to determine the Young’s modulus 
(65Gpa) necessary for numerical analysis. Thus, 
nonlinearity considered in this study is purely 
geometrical.  
 
Finite Difference Technique  
It involves conversion of the governing differential 
equation as well as the boundary conditions in to a set of 
algebraic equations. If the governing equation is 
nonlinear the algebraic equations are also nonlinear. 
Finite Difference expressions of the nonlinear governing 
equation (ii) at any grid point i for the domain with step 
size h is given by: 
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The above 2nd order governing equation has an error of 
order h2. Evaluating the above expression at n number of 
grid points n algebraic nonlinear equations are obtained 
for the domain. Another two equations are obtained from 
the boundary conditions that must be compatible with the 
beam’s deformation pattern. Those boundary conditions 
are also converted to algebraic equations through the 
finite difference expressions (forward difference at the 
initial boundary and backward difference at the final 
boundary so that order of error remains uniform, both for 
the governing equation and the boundary conditions). 
Thus there are n+2 unknowns and n+2 nonlinear 
algebraic equations for their determination. The set of 
nonlinear equations are solved by Newton-Raphson 
method.  
 
   It should be noted that for the linear theory only 
denominator becomes unity for the same expressions of 
governing equation. The boundary conditions remain the 
same. Numerical solutions of the linear theory should 
match closely with the exact solutions. It should be noted 
that for the iteration of the Newton-Raphson method to 
solve the nonlinear equations, initial guess values are the 
solutions of the linear equations. Thus, linear beam’s 
equations (i) are solved first. 

Integration Method to Solve Initial Value Problem 
   In this method, first of all, the 2nd order governing 
equation is converted to two first order equations. 
Let y=y1, dy/dx=y2. 
Therefore, the governing equation becomes, 
 
d y1/dx=y2 
d y2/dx=M/EI (1+ y2

2 )3/2
  

 
   The two equations are then solved by initial value 
integration using Runge-Kutta method (error of order h4). 
Therefore, this technique would yield much more 
accurate results than those from the finite difference 
technique. 
   Let’s consider the two utmost end conditions  (a) The 
Fixed-Free ends (Cantilever Beam) and (b) Both ends 
fixed beams.  
 
Analysis of the Cantilever Beam  
(Loaded by a point load P at the Tip) 
   Linear theory (second order Euler-Bernoulli equation) 
gives, for the elastic curve,  

M(x) = 02

2
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Using the two necessary boundary conditions,  

At x =0 , y =0 and 0=
dx
dy
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The equation for large deflection (nonlinear) analysis is 
as follows 
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   Though the boundary conditions remain the same, the 
governing equation itself has become much more 
complicated than that obtained from the linear theory. 
Therefore, numerical techniques should be used to get 
the deflection. As, both the boundary values are given at 
the initial point, the solution has been obtained through 
initial value integration by Runge Kutta Method.  
 
Analysis of the both ends fixed beam  
(Loaded at the mid-span by a point load P) 
Through large deflection analysis: 
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Since the governing equation is of 2nd order, the used 
boundary conditions are: 

At x0 = 0 ; y = 0 and  

 At xi = l/2 ; 0=
dx
dy

  

   Therefore, it becomes a nonlinear boundary value 
problem having no closed form solutions. Thus, finite 
difference method has been used to get the accurate value 
of deflection and stress of the beams.  
 
   From the linear theory, however, the exact solution for 
deflection at any point x up to the mid span: 
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3. EXPERIMENTAL SETUP 
   A sufficiently rigid structure made of wood was 
constructed for conducting the experiment with different 
end conditions. Dead weight was applied at a point near 
the tip of the specimen (200mm long straight SMA rod 
with a diameter of 2mm) and the corresponding 
deflection was measured by the height gage (accuracy 
0.01mm). In this case, there is a possibility of errors in 
reading, if the contact of height gage pointer with the 

deflected specimen is carried out observing with bare 
human eyes. To eliminate such errors, a simple circuit 
with a DC source and a diode was wired between the 
specimen and the height gauge pointer. Therefore, 
whenever the height gage touches the beam it is indicated 
by the flash. The schematic of the process is shown in Fig. 
2.  
 

 
Fig.2 Experimental setup. 
 
4. RESULTS AND DISCUSSIONS  
   In order to point out the deficiencies of the linear 
theories, the results of both the linear and nonlinear 
theories are shown in the same figures. Comprehensive 
results are obtained from experiments and compared 
with the analysis of cantilever SMA beam. As mentioned, 
superelastic beam material (NiTi) can recover too large 
strain (up to 7%). Moreover, stress-strain curve remain 
almost linear up to 1% strain [1-6]. Since the basic theme 
in this study is geometric nonlinearity of the beam (but 
linearly elastic beam material), the maximum strains 
corresponding to the numerical solutions are always 
within 1%.   
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Fig. 3: Load-lateral deflection curve up to a strain limit of 
1%.  
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   Fig.3 clearly depicts the fact that the linear theory 
predicts lower values of the deflections in comparison to 
that of the nonlinear theory. While, from Fig.4, it is 
evident that the experimental result closely follows the 
large deflection theorem. So, it can be concluded that it is 
vitally important to consider nonlinear theory (large 
deflection theory) while designing slender cantilever 
beams particularly at high intensity load. 
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Fig.4 Comparison of numerical analysis and 
experimental results for an SMA beam [for x=195mm]. 
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Fig.5 Deflection along the length of the specimen of the 
cantilever beam at a load of 2.5 N. 
 
   From Fig.5, again it is observed that small deflection 
(linear) theory fails to predict the correct deflections of 
the beam and consequently the solutions predicted by the 
nonlinear theory are much higher particularly at the grid 
points near the tip. Though not presented here, it is 
obvious that the large deflection analysis would show 
greater stress compared to the small deflection analysis, 
this again visualizes the importance of large deflection 
considerations.  
   It should be noted that shortening of the moment arm of 

the cantilever beam is an important topic but it is not 
included in this paper for the sake of brevity.  
   For fixed ends beams only numerical results are 
presented in the following Figure that are obtained from 
the finite difference technique as described in the earlier 
section of this paper.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Comparison of linear and nonlinear solutions for 
both ends fixed superelastic SMA beams. 
 
   Because of fixed ends the rigidity is high and thus the 
deflection of the mid-span of a both ends fixed beam is 
too small compared to tip deflection of the cantilever 
beam. Therefore, the discrepancy between the linear and 
the nonlinear theories is not that much for the range of 
loading presented in Fig. 6. However, more accurate 
numerical methods to solve boundary value problem like 
Multisegment method of integration [9] is likely to yield 
better results for the case of large deflection analysis.  
  

5. CONCLUSIONS 
   As the linear theory fails to account for the pronounced 
change in curvature and consequently predicts unrealistic 
solutions of elastic deflection and thus the stresses in the 
superelastic SMA beams, nonlinear theory of beam 
deflection is essential. Solutions are, thus, obtained for 
beams of different end conditions, using both linear and 
nonlinear theories in the present analysis, so that the 
shortcoming of linear theories in case of beams are 
verified and noted.  
 
   For large deflection analysis, geometric nonlinearity 
has been considered to investigate the elastic deflection 
of the slender superelastic SMA beams with two different 
end conditions. Results verify the fact that the linear or 
small deflection theory fails to predict the correct 
solutions particularly at high intensity loading. 
Discrepancy between the solutions predicted by the 
nonlinear and linear theories is more prominent for the 
cantilever beam than it is for the both ends fixed beams. 
Experimental results match closely with the nonlinear 
solutions that in turn, justifies the necessity of the present 
research. 
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