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1. INTRODUCTION 
     Investigation of transient force convective heat 
transfer in porous media is of considerable practical 
significance but surprisingly literature on this topic is 
limited, specially for the entrance section. It has 
attracted more attention by its intrinsic practical 
importance. A review of the literature shows that only 
steady state forced convection problems were 
considered and mainly two types of geometries, 
parallel plate channels and circular tubes, have been 
considered in the research works. In this respect, the 
main objective of this work was to determine the 
temperature profile at the very entrance section of a 
annular section since solutions in this region in not 
available in the literature.  
 
     Vafai and Kim (1989) analyzed the boundary and 
inertia effects in a steady forced convection over a 
horizontal plate. They used volume averaging 
technique for constant porosity media. Kaviany (1985) 
used a numerical solution of laminar flow in a porous 
channel bounded by isothermal parallel plates and his 
work was based on the Darcy model. Poulikakos and 
Renken (1987) used a variable porosity model and 
numerically investigated the effects of flow inertia 
bounded by parallel plates and also for circular tubes. 
Vafai and Kim (1989) also studied porous forced 
convection between two parallel plates. Cheng and Hsu 
(1988) studied the steady forced convection problem in 
packed sphere beds. In all the above works, steady 
state flow behavior is assumed for both hydrodynamic 
and thermal fields. 

      
 

 

     This work deals with the problem of unsteady state 
forced convection in the entry region of a porous 
annulus. Heating starts at the entrance section so that 
the thermal boundary layer is developing. However, 
the hydrodynamic boundary layer is assumed to be 
steady and fully developed. Calculations are performed 
for the following two conditions: (I) step temperature 
change at inner wall while the outer wall is kept 
adiabatic; (II) simultaneous step temperature change at 
both inner wall and entrance cross section while the 
outer wall is kept adiabatic. 
 
2.FORMULATION 
     Fig. 1 and 2 shows the geometry and coordinate 
systems. The fluid enters the annular passage with 
uniform velocity distribution and the physical 
properties of the fluid are assumed to be constant. The 
equations of motion and energy can be written in the 
following dimensionless forms: 
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τ is the dimensionless time and σ is the heat capacity 
ratio. 
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ABSTRACT 
The governing equations for transient laminar forced convection in the entrance region of a 
porous concentric annulus are solved numerically. Solutions are obtained through MATLAB 
programming. The hydrodynamic boundary layer is assumed to be fully developed. Both 
Darcian and Non-Darcian effects on the hydrodynamic field are taken into consideration. 
Numerical solutions are obtained for the velocity and temperature fields for several different 
initial and boundary conditions. The results investigate the effect of the fluid and different solid-
matrix parameters. The results show that as the thermal boundary layer becomes thinner, the 
resistance to heat transfer from the wall to the fluid decreases, and consequently the heat transfer 
coefficient improves. 
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Fig. 1:  Two dimensional channel for model of 

analysis. 

Annulus entrance
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Fig. 2: Finite difference network in r-z plane. 
 
The equation of continuity can be written in the 
following integral form: 
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Since the physical properties of the fluid and the 
porous medium are assumed to be constant, the 
momentum equation and the energy equations are 
solved separately. First the momentum equation is 
solved with the help of the continuity equation to 
obtain the velocity and pressure distribution and then 
the energy equation is solved using theses values. 
The initial and boundary conditions are as follows: 
Initial condition: 
For z*  = 0, and N < R < 1: u* = 1; 
For z* > 0 and R = N or R = 1: u* = T* = 0; 
Boundary condition: 
At z = 0 and N < R < 1: u* = 1; 
For z > 0 and R = N or R = 1: u* = 0; 
 

For τ > 0, the thermal boundary conditions are as 
follows: 
 
Case (I): step temperature change at inner wall while 

the outer wall is kept adiabatic;  
 
At z = 0 and N < R < 1: T* = 0; 
For z > 0 and R = N: T* = 1; 
For z > 0 and R = 1: 0*

* =
∂
∂

r
T ; 

 
Case (II): simultaneous step temperature change at 

both inner wall and entrance cross section 
while the outer wall is kept adiabatic. 

  
At z = 0 and N < R < 1: T* = 1; 
For z > 0 and R = N: T* = 1; 
For z > 0 and R = 1: 0*

* =
∂
∂

r
T ; 

Very far upstream from the entrance to the heated 
section, the fluid is at uniform temperature T0: 
 
The expression for normalized mixing cup temperature 
or bulk temperature can be written as follows:  
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The expression for local Nusselt number can be shown 
to be the following by making an energy balance at any 
cross-section of the tube: 
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3.METHOD OF SOLUTION 
     Equations are solved by a self developed code using 
very popular software MATLAB 
(www.mathworks.com). The scripting language is 
syntactically very similar to FORTRAN-77 but it has 
better visualization capabilities. The hybrid scheme has 
been used to treat the convection terms and the 
pressure coupling has been dealt with SIMPLER 
algorithm (Patankar, 1980) in the solution procedure. 
The results are not changed significantly if a fully up-
winded second order spatial differencing is applied to 
approximate the convective terms. A typical finite 
difference grid pattern is shown in Fig. 3. The solution 
is obtained using marching technique. At each cross 
section, a set of simultaneous linear equations have to 
be solved to get temperature distributions. The same 
procedure is repeated for other values to obtain the 
temperature field all over the entire annulus length at 
time τ+∆τ. 
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Fig. 3: A typical grid pattern for solution of the 

energy equation. 
 
4.RESULTS AND DISCUSSION 
Numerical calculations are performed for the following 
values:  
N=0.3, 0.5 and 0.8 

Da =12, 20 and 30 
Λ=10, 50 and 100 
Pre=0.3, 0.6 and 0.9 
Due to space limitation and similar nature of the output 
of numerical simulation, results are only shown for the 

following parameters:  N=0.5, Da =12, Λ=10 and 
100 and Pre=0.6 and 0.9. 
 
 

 
 
Fig. 4: Mixing cup temperature in the axial direction, 

case (I), Da  = 12 and N = 0.5 and Pre = 0.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Axial variation of local Nusselt number, case 

(I), Da  = 12 and N = 0.5. 
 

     Fig. 4 shows the transient behavior of the mixing 
cup temperature against the dimensionless axial 
distance z* for Da  = 12, N = 0.5 and Pre = 0.6. The 
figure shows that the mixing cup temperature at a 
given location z* increases as the inertial effect 
increases.  This is because of the fact that the inertial 
effect increases the heat transfer by reducing the 
boundary layer thickness.  
     Fig. 5 shows the variations of local Nusselt number 
against the dimensionless axial distance for two values 
of the effective Prandtl numbers. This figure shows 
that the Nusselt number increase with an increase of 
the inertial parameter. An increase in inertial parameter 
causes a more uniform velocity profile which in tern 
causes a more uniform temperature distribution thereby 
resulting a lower value of **

mw TT − . The figure also 
shows that as the effective Prandtl number increases, 
the Nusselt number also increases that is the resistance 
to heat transfer from the wall to fluid decreases and as 
a result the heat transfer increases. 
 
5.CONCLUSION 
The problem of growth of thermodynamic boundary 
layer in the entry region of a porous annuli is analyzed. 
Numerical simulations are performed for the velocity 
and temperature distributions for different initial and 
boundary conditions. Results show that an increase in 
either the Prandtl number or the inertial effect or both 
increase the mixing cup temperature and the Nusselt 
number.  
 
6.NOMENCLATURE 
cf = Specific heat of fluid 
cs = specific heat of solid 
Da = Darcy number, φ2

0R
K  

F =  Empirical constant 
K = Permeability of the porous medium 
kf = Thermal conductivity of fluid  
ks = Thermal conductivity of fluid 
N = Annulus radius ratio 

Pre = Effective Prandtl number, 
e
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Tm = Mixing cup temperature over any cross 
section 

Tw = Heated wall temperature 
T0 = Fluid temperature at annulus entrance 
u0 = Axial velocity at the entrance 
z* = Dimensionless axial coordinate, ( )

Re
12

0R
zN−  

τ = Dimensionless time, σ
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ρf = Fluid density 
ρs = Solid density 
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αe = Effective thermal diffusivity of fluid, 
( ) sf kk φφ −+ 1  

φ =  Porosity of the porous medium 
νf = Kinematic viscosity of the fluid 
Λ = Inertial parameter, νφ /00

5.1 RFu  
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