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1. INTRODUCTION 
     Sound waves are ordinarily viewed as consisting of 
coupled pressure and displacement oscillations 
propagating through a gas. However, temperature 
oscillations always accompany the pressure changes [1]. 
The combination also of these three oscillations, and 
their interaction with solid boundaries produce a rich 
variety of 'thermoacoustic' effects. A thermoacoustic 
engine, whether it is a heat pump or prime mover, 
consists of four basic parts; specifically (a) a speaker, (b) 
a resonant tube, (c) a heat exchanger, and (d) a stack. The 
stack serves as the 'heart' of any thermoacoustic device 
and plays a key role in the operation of such devices. 
Positioned between the hot and cold heat exchangers, the 
stack determines how much and in what direction heat 
and work transfer will occur. The stack is the physical 
structure that imposes boundary conditions on the 
oscillating gas, and provides the critical phase 
relationships necessary for beneficial heat or work 
transfer. Starting from the single plate, stacks are 
available in different sizes and shapes. Multi-plate arrays, 
honeycombs, spiral roles, and pin arrays' are some 
example of stacks commonly used in thermoacoustic 
engines and refrigerators [2]. Stacks made of parallel 
plates are simple in construction and are popular stack 
geometry for thermoacoustic devices. A single plate 
placed in front of an acoustic standing wave is the 
simplified version of thermoacoustic stack used to 
describe many fundamental thermoacoustic phenomena.  
 
For a single plate, Swift [3], Raspet et al. [4], Santillan 
and Boullosa [5], Wetzel and Herman [6], and Wetzel 
and Herman [7] performed analytical and/or 
experimental works on single plate thermoacoustic 

system. All of the above works considered the standing 
wave features for fluctuating pressure and fluctuating 
velocity even though these fluctuating features are 
modified by the presence of the plate itself. None of them 
considered the finite thickness of the plate.  
In this paper, we focus on the hydrodynamic and thermal 
behavior of an oscillating fluid around a single plate 
stack of a multi-stacks thermoacoustic device. Analytical 
expressions for velocity, temperature are derived after 
simplifying and solving the momentum and energy 
equations. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Schematic diagram of the problem 
 
 
2. PROBLEM FORMULATION 
     Figure 1 shows a single plate stack exposed to an 
oscillating compressible gas. First to be derived is an 
expression for axial velocity as a function of transverse 
direction. Considering the momentum equation for a 
compressible viscous flow [8] 
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where µ and ξ are dynamic and second viscosity, 
respectively. To simplify Eq. (1) the following was 
argued: it is assumed that νδλ

~
11 ≥vu ; x∂∂ is of order 

λ
~1 and y∂∂ is order of νδ1 ; and λδν

~
<< . v1 is the 

transverse velocity component, λ~ is the radian length of 
the sound wave, ωνδν 2= is the viscous penetration 
depth. Equation (1) then reduces to 
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Using tie ωϕϕ =ˆ (where ϕ is any variable, for example, u, 
s, p etc.), the general solution to the momentum equation 
(Eq. (2)) is  
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subjected to the boundary conditions, u1(0)=0 and 
u1(∞)=finite. The final expression for u1 becomes 
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The energy equation, according to Landau and Lifshitz 
[8], for the fluid is  
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(5) 

 
where β, kf, ρf, and Cp are thermal expansion coefficient, 
fluid thermal conductivity, fluid density, and specific 
heat of the fluid at constant pressure, respectively. 
Linearising Eq. (5) after introducing a perturbation 
expansion and keeping only the first order terms, Eq. (5) 
becomes after some rearrangement 
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and the general solution to Eq. (6) is 
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The boundary conditions for Eq. (7) are T1(0)=Tw and 
T1(∞)=finite. One needs to solve the energy equation for 

the solid region prior to calculating the unknown 
constants of Eq. (7). The energy equation for the solid 
region is 
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where ρ, Cs, and ks are solid density, specific heat of the 
solid, and solid thermal conductivity. Linearising and 
keeping the first order term only, Eq. (8) becomes 
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The general solution to Eq. (9) is  
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subjected to the boundary conditions Ts1(0)=Tw and 
Ts1(∞)=finite. This gives the final expression for the 
temperature distribution inside the solid region as 
 

y
k

Ci

ws
s

ss

eTT

ρω
−

=1  (11) 

Furthermore, the solid-fluid interface satisfies the 
boundary condition 
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Using Eqs. (7), (11), and (12), and after long calculations 
one can obtain  
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(13) 

 
where Pr is the Prandtl number of the fluid. The 
parameter εs can be defined by    
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which takes care the influence of solid properties on the 
fluid temperature and vice versa. It should be noted that 
the expressions of velocity and temperature of fluid have 
a term p1. The term p1 is the first order pressure which 
needs to be determined using a wave equation. 
 
3. WAVE EQUATION AND SOLUTION 
     The linearized first order continuity and inviscid 
momentum equations are given in Eqs. (15) and (16) 
after a perturbation expansion 
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(16) 

 
Differentiating Eq. (16) and combining with Eq. (15), 
one obtains 
 

2
1

2

21
1

x
p

∂

∂
−=
ω

ρ  (17) 

 
Using the following thermodynamic relation 
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 ρ1 can be eliminated from Eq. (17) to get  
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which can be reduced into Eq. (20) by using the 
expression of temperature (Eq. (13)).  
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(20) 

Using the speed of sound and heat capacity 
thermodynamic relations, c2=γRTm and Cp=γR/(γ-1), the 
terms inside the square bracket of Eq. (20) simplify to 
become (ω/c)2. Finally, the pressure equation for this 
problem becomes 
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The general solution to the wave equation described in 
Eq. (21) is  
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where the constants ψ1 and ψ2 are  
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At the starting point of the plate (x=xs), it is appropriate to 
apply the standing wave pressure ( )s

s xp . However, it is 
extremely difficult to apply an appropriate boundary 
condition at the plate exit (x=xe). None of the existing 
thermoacoustic literatures gives an idea about such 
boundary condition. In such situation, the more logical 
way to set the exit boundary condition similar to the 
fluctuating feature of a standing wave, i.e. ( )e

s xp . Then 
the constants, C1 and C2 of Eq. (22), can be calculated in 

the following forms   
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where the definitions of different pressures in Eq. (24) 
are given by 
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where PA is the pressure amplitude determined by the 
drive ratio (=PA/Patm.) for a particular problem.  Finally, 
the expression of p1 becomes 
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The applicability of Eq. (26) is restricted by the relations 
given in Eq. (23). To get a real result from Eq. (26) the 
following condition must be satisfied 
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which, after further mathematical operations and 
simplifications, becomes 
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4. CONCLUSION 
     We modeled the stack of a thermoacoustic device as a 
single plate exposed in front of an oscillating 
compressible gas. Fluid is assumed 
viscous-compressible. The governing equations for 
velocity, temperatures inside the fluid and solid are 
simplified using a first order linear perturbation method. 
Expressions for velocity, temperatures in solid and fluid 
are derived. Each expression shows a real and an 
imaginary part. Our main goal is the real part of each 
expression. Determining the expression of pressure in 
terms of the standing wave characteristics completes the 
analysis.     
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