
Proceedings of the 
International Conference on Mechanical Engineering 2005 

(ICME2005) 28- 30 December 2005, Dhaka, Bangladesh 
 

ICME05-AM-01 

© ICME2005 1   AM-01 

 
 
 
 

 

 
1. INTRODUCTION 
     Within the framework of finite-element analysis, the 
classical interface approach has been an important tool 
for modeling contact behavior between interconnected 
bodies. In the classical approach the modeling of relative 
jump is described using a double set of nodes on a 
predefined “weak plane”. This weak plane can only be 
defined at the element boundaries (i.e. not across the 
elements). For e.g. laminated composites, the classical 
interface approach is adequate [1-3]. However, the path 
of separation is limited by the mesh structure and 
suffering from a mesh bias [4, 5]. 
     Regarding the plasticity-based localization models, 
the incorporation of discontinuous approach has been 
tackled by different authors (e.g. [6-10]). Recently, the 
incorporation of discontinuous approach in (frictional 
and dilatational) soil plasticity models has been 
developed and implemented into the Plaxis Finite 
Element Code for Soil and Rock Analyses.  The 
implemented approach makes use of the PUM/XFEM 
framework of Wells and Sluys [8]. To account for the 
friction and dilatation effects, the present approach treats 
discontinuity as a special-purposed interface element. 
The PUM/XFEM-based interfaces do not have to be 
aligned with element boundaries and they can cross soil 
elements at any place with arbitrary orientation. The 
onset/ propagation of these interfaces have been based on 
a threshold value of an average equivalent plastic strain 
at the tip – rather than on the singular acoustic tensor 

criterion. The idea of an averaged localization criterion 
has been utilized earlier by e.g. Ortiz et al. [11] in which 
the local onset/propagation is related to the onset of 
plasticity at the element centre. (Note that despite the 
bifurcation condition is not satisfied at the center point 
and the utilized direction is no longer localization 
directions, this averaged localization criterion is shown 
to be adequate). Moreover, the present approach uses the 
averaged gradient of incremental displacements to 
determine the orientations of discontinuity. 
     The mainframe of the present discontinuous approach 
is shortly by-passed in Section 2. Then, a short 
description of the onset/propagation criterion and 
orientation are presented in Section 3. Section 4 
illustrates the capability of the present approach by 
considering biaxial tests and soil retaining wall 
problems.  
 
2. FRAMEWORK OF THE PROPOSED MODEL 
     The point of departure is the PUM/XFEM approach, 
as described in e.g. [8, 12], which employs an enhanced 
displacement field to describe strong localization or 
discontinuity phenomenon. 
 
2.1 Kinematics of Discontinuous Field 
    Due to a discontinuity Γd, a body Ω bounded by Γ is 
divided into two sub-domains Ω+ and Ω-, which lie on 
either side of the discontinuity. n is the unit normal to the 
discontinuity, which points to Ω+ (Figure 1). 
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Fig 1. Body Ω crossed by a discontinuity Γd. 
 
The discretised displacement field u and strain field ε can 
be rewritten as 
 
             u  =   Na   +   )(xdHΓ Nb                                   (1) 
 
      ε  =  Ba + )(xdHΓ Bb + )(xdΓδ  (RN)b                   (2) 
 
where a and b represent the regular nodal displacements 
and the enhanced displacement jumps, B contains the 
derivatives of the shape function matrix N, HΓd is the 
Heaviside function (1 for x∈Ω+ and 0 for x∈Ω-), and 

dΓδ  is the Dirac-delta function (1 at Γd and 0 elsewhere). 
R is a orientation matrix containing the components of n. 
Consider an orthogonal system nst with s and r two 
mutually unit orthogonal vectors perpendicular to n. The 
components of the displacement-jump (un, us, ur) at Γd 
can be found as (un, us, ur) = Λ.(n, s, r),  where Λ is a 
so-called displacement-jump vector. 
  
2.2 Finite Element Formulation 
    The finite element formulation is derived by 
employing two separate variational equations [12]. Using 
discrete formulations of displacements and strains, the 
corresponding discrete formulation of weak equations 
can be expressed as  
 

Γ=Ω ∫∫
ΓΩ

dd u

u

tNB TTσ                                   (3a) 

   Γ=Γ+Ω ∫∫∫
ΓΓΩ

Γ
+

ddd u

ud

tNtNB TTT
dHσ            (3b) 

 
where σ is the Cauchy stress tensor in a vector notation, 
tu is external traction forces along surface Γu and t is the 
tractions at discontinuity Γd.  (Note: the first expression 
governs the global equilibrium in body Ω, while the 
second expression can be considered as the governing 
equilibrium equation in sub-region Ω+ including 
tractions at the discontinuity). Next, assuming the 
following relations for the stress rate in the continuum 

.
σ  

and the traction rate at the discontinuity 
.
t  
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b                                          (5) 

where: Dep is the elastoplastic tangent stiffness matrix of 
the continuum and Tep represents a (pseudo) elastoplastic 
tangent stiffness matrix of the discontinuity, taking into 
account for the orientation of discontinuity in bΓ. After 
substitutions of the rate equations (4) and (5) into the 
discretised weak equations (3a) and (3b) and 
linearization, one arrives at 
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where the stiffness matrix K contains the contribution of 
the regular and the enhanced parts. fext and fint are the 
external and the internal forces of the regular and 
respectively, the enhanced part. Note that the initial 
stresses from gravity loading and K0-procedure is taken 
into account in the internal forces int

af and int
bf . 

 
 2.3 Elasto-Plastic Model for Intact Soil 
    Without referring to any particular plasticity model, 
the governing equation for the intact soil continuum can 
be formulated as  

   
.
σ  = De (

.
ε  - p.

ε ),   p.
ε = 

.
λ

σ∂
∂g

                             (7a) 

   F = F(σ,q) ≤  0 ,  
.
λ ≥ 0 , 

.
λ F  = 0,  

..
Fλ = 0         (7b) 

 
where: 

.
σ  and 

.
ε  are the stress rate and the strain rate, 

p.
ε is the plastic part of the strain rate, 

.
λ  is the plastic 

multiplier rate, F and G are the yield function and the 
plastic potential function, q is an internal variable to 
accommodate e.g. hardening behavior, De is the elastic 
stiffness matrix. 
 
2.4 PUM/XFEM Interface (Discontinuity) 
    Again, without referring to any particular discrete 
plasticity model the governing equations at discontinuity 
can be formulated in terms of the traction vector t and the 
jump vector b as follows 
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φ = φ(t, κ) ≤  0 ,  Γ
.
λ ≥ 0 , Γ

.
λ φ  = 0,  

..
φλ Γ = 0       (8b) 

 
where Te represents the pseudo stiffness matrix of the 
interface, bp represents the “plastic part” of the jump, bΓ 
represents the total jump, Γ

.
λ  is the plastic multiplier 

rate at discontinuity, φ and µ are the discrete yield 
function and the plastic potential function of 
discontinuity, κ is an internal variable related to the state 
of sliding/cracking at discontinuity.  
 
3. ONSET/PROPAGATION AND ORIENTATION 
     At the onset of discontinuity, a bifurcation model 
assumes plastic yielding inside the shear band and elastic 
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unloading outside the band. For an elastic 
perfectly-plastic model, discontinuity along the slip-line 
is incepted when the determinant of the acoustic tensor A 
is zero (e.g. [11, 13]). The onset of discontinuity results 
in a bifurcated mechanical response: the plastic 
deformation being concentrated at discontinuity surface 
while the remaining part of the structure unloads 
elastically, e.g. as described in [7].  
 
3.1 Global Criterion 
     When using a non-local criterion, the local bifurcation 
condition is not necessarily satisfied at the tip/triggering 
point [7]. The resulting direction of discontinuity n is no 
longer the localization direction, but can be thought of as 
an approximation of the general trend of shear-band 
orientation towards localization/failure. The present 
approach uses a threshold value for the equivalent plastic 
strain γp

eq as the onset/propagation criterion. γp
eq has been 

averaged using a Gaussian weight function [8] 
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where w is the weight function, r is the distance from the 
tip, and l determines how fast the weight function decays 
from the tip. When the threshold value of  p

eq
~γ  at the tip 

is violated, discontinuity is inserted across the element 
touched by the tip.  
 
3.2 Orientation of Discontinuity 
    For a general non-homogeneous case the orientation 
of discontinuity is according to the gradient of 
displacement-increment at the tip. For this purpose, a 
incremental displacement function ∆V ≡  ∆V(x) is 
determined based on the nodal values {∆Vi}. ∆V at a 
Gaussian point (ξ, η, ζ) is interpolated using the element 
shape function matrix N and the orientation follows from 
the gradient of ∆V at the tip, i.e. 
 
      ( )

x∂
∆∂ V  =  [

x∂
∂N ] {∆Vi}                                           (10) 

 
in which the derivatives of the shape functions are 
computed based on their local derivatives and the 
Jacobean matrix J. To obtain more reliable information 
of the sliding/cracking direction, a non-local averaging 
has been applied using a Gaussian weight function. Note 
that the proposed displacement gradient approach is 
mainly for handling non-homogeneous cases, for 
homogeneous cases one simply uses the singular 
acoustic tensor criterion.  
 
4. NUMERICAL EXAMPLE 
     For illustration purposes, the implemented approach 
has been applied to analyze mode-II failure in 2D case by 
employing the elastic perfectly-plastic Mohr-Coulomb 
soil (see also [14, 15]). The analysis is performed using 
6-noded triangular elements (Note: in a similar retaining 
wall problem Borja and Lai [16] used constant strain 

triangular CST-element). For a plane-strain situation, the 
yield function f and the plastic potential function g can be 
formulated as  
 

F= ½ (σ3-σ1) + ½ (σ3+σ1)sinϕ - c.cosϕ           (11) 

 
     G  = ½ (σ3-σ1) + ½ (σ3+σ1) sinψ                (12) 

 
where: σ1 is the major compressive principal stress, σ3 is 
the minor compressive (or the major tensile) principal 
stress,  c is the cohesion, ϕ and ψ are the frictional angle 
and the dilatational angle. For the PUM/XFEM-interface 
element at discontinuity we assume the following yield 
function φ and plastic potential function µ  
 
   φ  = |ts| + tn tanϕi - ci(κ)    µ  = |ts| + tn tanψi            (13)       
 
where ts and tn are the tangential and normal components 
of the tractions, ϕi and ψi are the frictional and 
dilatational angle of the interface. Considering ψi=0 
(pure sliding at discontinuity) and a simple linear 
softening model one obtains 
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Note: (i) this simplified relation also satisfies the 
consistency condition 

.
φ =0, and (ii) for non-frictional 

material ϕi=0, it simply leads to ∆ nt
.

= kn ∆bn and ∆ st
.

= 
-h ∆bs. 
 
4.1 Biaxial Test 
     To verify the implementation a simple biaxial test has 
been considered, which is also used to demonstrate the 
objectivity of the present approach. On top the vertical 
displacement uy is prescribed, while the bottom of the 
specimen is fully fixed. The onset/propagation is 
according to the onset of plasticity. The objectivity of the 
softened force-displacement response with respect to 
different triggering points, mesh densities and mesh 
alignments has been examined using different meshes as 
shown in Figure 2(a)-(d).The force-displacement curves 
is shown in Figure 3.  
 
4.2 Retaining Wall 
     The second example considers a soil retaining wall 
problem considering initial stresses from the gravity 
loading and K0-procedure. In this non-uniform stress 
field, localization in the continuum takes place 
progressively starting from the most critically stressed 
points and propagating in the direction favoring material 
bifurcations [16,17]. The force-displacement curve in the 
present passive (smooth) retaining wall problem is 
shown in Fig.4. 
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                   (a)                   (b)  
 

   
                   (c)                (d)  
 
Fig 2. Deformed mesh in: (a) regular coarse mesh right 
triggering, (b) regular coarse mesh left triggering, (c) 
regular medium mesh right triggering, (d) irregular 
medium mesh right triggering.  
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Fig 3. Force-displacement  curves (E =104 kN/m2, ν=0,  
           c=100 kN/m2, ϕ=ψ=0o, h=100 kN/m3). 
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Fig 4. Force-displacement curve (c=30 kPa, ϕ=20o, γ = 
16 kN/m3, wedge depth is 2m); Fx at peak ≈ 230 kN, Fx 
residual (at c = 0) ≈ 70 kN, threshold  value according to 
γp at peak.  
 
5. CONCLUSIONS 
     An application of PUM/XFEM-based interface model 
has been presented. This type of interface elements can 
be inserted across the soil elements in a 
mesh-independent manner. The onset/propagation has 
been based on a threshold value of an equivalent plastic 
shear strain, while the interface orientations are based on 
the gradient of displacement- increments. The objectivity 
of the present PUM/XFEM-interface model has been 

verified by considering biaxial tests using different 
meshes. The capability of the present interface model for 
describing progressive localization/discontinuity has 
been demonstrated by considering soil retaining wall 
problems. The corresponding peak and residual load are 
comparable to the classical wedge solution. Further, the 
present interface model is also capable of describing the 
progress of a curved slip-line/discontinuity in a passive 
rough-wall problem. More works will be performed in 
the near future to further evaluate the capability of the 
present PUM/XFEM-interface model. This research is 
supported by the Technology Foundation STW (project 
DCB 6368).  
 

 

 
 
 
Fig 5. (a) Deformed mesh; (b) Shear-band path (red/grey: 
plastic points, black: “cracked” points); (c) Displacement 
plot/sliding mechanism; (d) Localized zone. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
N Unit normal vector   - 

Nst Orthogonal axes (n,s,t)   - 
      G Gravity vector (m/s2) 

N Shape function matrix   - 
u Total displacement vector (m) 
ε Strain vector   - 
εp Plastic strain vector   - 
a Regular displacement vector (m) 
b Displacement-jump vector (m) 

      B B-matrix   - 
      R Orientation matrix   - 
      σ Cauchy stress vector (Pa) 
      t Tractions at discontinuity (N/m) 
      tu Boundary tractions (N/m) 
     De Elastic stiffness of soil (Pa) 
     Dep Tangent stiffness of soil (Pa) 
     Te Elastic stiffness discontinuity (N/m) 
     Tep Tangent stiffness discontinuity (N/m) 

      bΓ Jump at discontinuity (m) 
      K System matrix (N/m) 
     ∆a Increment of a (m) 
     ∆b Increment of b (m) 
     fext External forces (N) 
     fint Internal forces (N) 
     F Yield function   - 
     G Plastic potential function   - 
     λ Plastic multiplier   - 
     φ  Yield function discontinuity   - 
     µ Potential function discontinuity   - 
     λΓ Plastic multiplier discontinuity   - 
     w  Gaussian weight function   - 
      l Length parameter   - 
      r Distance from the tip  
   p

eq
~γ  Threshold for plastic strain   - 

    ∆V Incremental function (m) 
    ∆Vi Incremental at the nodes i (m) 
(ξ,η,ζ) Gaussian point coordinate   - 
      J Jacobean matrix   - 
    σ1 Major compressive stress  (Pa) 
    σ3 Major tensile stress  (Pa) 
     ϕ Frictional angle   - 
     ψ Dilatational angle   - 
     c Cohesion (Pa) 
     ϕi Frictional angle discontinuity   - 
     ψi Dilatational angle discontinuity   - 
     ci Cohesion at discontinuity (N/m) 
     h Softening modulus (N/m2) 
     tn Normal traction  (N/m) 
     ts Shear traction  (N/m) 
     kn Normal stiffness discontinuity (N/m) 
     bn Normal jump at discontinuity   (m) 
     bs Shear jump at discontinuity   (m) 
     E Young’s modulus (Pa) 
     ν Poisson’s ratio   - 
     Fx Horizontal force at the wall  (N) 
   

 
Note: 
( ).           is a symbol for the rate of parameter ( ) 
 δ( )/δx    is a symbol for the gradient of ( ) over x  
 


