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1. INTRODUCTION 
     This paper is an attempt to determine the value of 
stress concentration factor in a stepped bar under the 
condition of uniform tensile load and bending moment. 
In this regard we have used displacement potential 
function formulation of two-dimensional elastic 
problems, which enables us to manage the mixed mode 
of the boundary conditions as well as the zones of their 
transition. 
     Now-a-days elasticity is a classical topic and its 
problems are even more classical. But the stress analysis 
problems are still suffering from a lot of shortcomings 
[1-5]. It has been often failed in establishing a very good 
correlation between theoretical analyses and 
experimental observation. To make-up this problem, it 
has been conjectured the behavior of materials in terms 
of its ultimate strength, yield strength, endurance 
strength, and fracture strength, but still could not really 
satisfactorily account for the shortcomings. Two factors 
may really be responsible for it. Both of these factors 
involve selection of the boundary of elastic problems: 
one is the boundary condition and the other is the 
boundary shape. The necessity of the management of 
boundary shape has lead to the invention of the finite 
element technique and its overwhelming popularity, 
especially because of the side by side development of 
high-powered computing machines. Of course, the 
adaptation of the finite-element method relieved us from 
our major inability of managing arbitrary boundary 
shapes but we are constantly aware of its lack of 
sophistication and doubtful quality of the solutions so 
obtained. 
     The other factor of impediment to quality solutions of 

elastic problems is the treatment of the transition in 
boundary conditions. Elastic problems are either 
formulated in terms of deformation parameters or stress 
parameters. But, at boundary, all the problems are 
invariably the mixture of both known deformations and 
known stress boundary conditions. But neither of the two 
formulations would allow us to account fully both these 
two types of boundary conditions with equal precision 
and sophistication in the region of transition where 
boundary conditions are changing from one type to the 
other. 
     The formulation of two-dimensional elastic problems 
used here was first introduced by Uddin [6], later Idris et. 
al. [7-8] used it for obtaining analytical solutions of a 
number of mixed boundary-value elastic problems and 
Ahmed [9-12] extended its use where he obtained 
finite-difference solutions of a number mixed boundary 
value problems of simple rectangular bodies. Later, 
Akanda developed a new numerical scheme [13-15] by 
which he solved irregular shaped elastic bodies under 
mixed mode of loading. This study focuses the solution 
of the problems of rectangular stepped bar using the 
Akanda’s developed numerical scheme. Solutions 
especially at the fillet region, which are observed as the 
most critical zone, are looked into. Analyzing the 
solution obtained, stress concentration factors are 
determined. Effects of fillet radius and the thickness ratio 
of the stepped bar on the stress concentration factors 
have also been studied. The rationality and reliability of 
solution is checked by comparing the results obtained 
with those available in the literature. The stress 
concentration factor (Kt) is presented graphically as a 
function of fillet ratio (r/h) and height ratio (H/h) for 
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body under bending moment as well as under uniform 
tensile load.  
 
2. GOVERNING  EQUATION  IN  TERMS  OF  

DISPLACEMENT POTENTIAL FUNCTION 
    Analysis of stresses in a body is usually a 
three-dimensional problem. Fortunately, in the cases of 
plane stress or plane strain, the stress analysis of 
three-dimensional body can easily be treated as a 
two-dimensional one. In our case the problem of stepped 
bar is considered as a plane strain problem. In the case of 
the absence of any body forces, the equations governing 
the three stress components σx, σy and σxy under the states 
of plane stress or plane strain are: 
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Replacement of the stress components in Eqs.(1-2) by 
their relations with the displacement components u and v 
makes Eq. (3) redundant and transforms Eqs. (1) and (2) 
to 
 

 
2 2 2

2 2

1 1 0
2 2

u u v
x yx y

µ µ∂ − ∂ + ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
             (4)                                                       

 

 
2 2 2

2 2

1 1 0
2 2

v v u
x yy x

µ µ∂ − ∂ + ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠
              (5)                                                                 

 
The problem thus reduces to finding u and v in a 
two-dimensional field satisfying the two elliptic partial 
differential equations (4) and (5). 
     In this paper, the problem is reduced to the 
determination of a single function instead of two 
functions u and v, simultaneously, satisfying the 
equilibrium equation (4) and (5). In this formulation, as 
in the case of Airy’s stress function ϕ(x,y),a potential 
function ψ(x,y) [6] is defined in terms of displacement 
components as 
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When the displacement components in Eqs. (4) and (5) 
are replaced by ψ(x,y), Eq.(4) is automatically satisfied 
and the only condition that ψ(x,y) has to satisfy becomes 
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Therefore, the problem is now formulated in such a way 
that a single function ψ(x, y) has to be evaluated from the 
bi-harmonic equation (7), satisfying the boundary 
conditions that are specified at the boundary. 
 
3. BOUNDARY CONDITION WITH 

Ψ-FORMULATION 
     The boundary condition are known in terms of the 
normal and tangential components of displacement un 
and ut, and of stress σn and σt at any point on an arbitrary 
shaped boundary. These four components are expressed 
in terms of σx, σy, σxy, u, and v. The components of stress 
and displacement with respect to the reference axes x and 
y of the body, are expressed as follows:  
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Here l and m are the direction cosines of the normal to the 
boundary. The boundary conditions at any point on the 
boundary are specified in terms of any two values of un, 
ut, σn and σt. In order to solve the mixed boundary- value 
problems of irregular-shaped bodies using the present 
formulation, the boundary conditions need to be 
expressed in terms of ψ(x,y) and this can be done by 
substituting the following expressions of stress along 
with the displacement components in Eq. 6 with respect 
to reference axes x and y in Eqs. (8-11). 
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     As far as numerical method of solution of bi-harmonic 
equation is concerned, it is evident from the expressions 
of boundary conditions (8-11) that ψ has to satisfy 
bi-harmonic equation within the body and any of Eqs. 
(8-11) at the points on the boundary. 
 
4. ELASTIC PROBLEM AND ITS BOUNDARY 

CONDITIONS 
    The geometry of the selected problem and their 
boundary conditions are shown in Figs 1 and 2. Figure 1 
describes the problem of stepped bar under loading as a 
cantilever. Figure 2 describes the same geometrical 

ut= vl – um                                                     (9)
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problem considered under axial tension. The end surface 
of the wider end of the stepped bar is considered rigidly 
fixed, therefore, the boundary conditions are given as 
un=0, ut=0. The other surfaces, those are free from 
loading, the boundary conditions are given as σn=0, σt=0. 
The dimensions width, H, and length, b, are kept fixed 
and varying the fillet radius, r, and smaller thickness, h, 
different problems are solved for different H/h and r/h 
values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Elastic problem with boundary conditions for 
bending moment (profile H/h = 2.00; r/h =1.00). 

 
 
5. NUMERICAL SOLUTION 
     In practice the whole region of the elastic problem is 
divided into a desire number of mesh points and the value 
of dependent function are evaluated only at these points. 
Considering mixed boundary value problem, boundary 
conditions may be specified into four combinations: (un, 
ut); (σn, σt); (un, σt) and (σn, ut). It had been seen that the 
boundary conditions are given in terms of derivatives of 
the function ψ. These differential equations have been 
expressed in form of difference equations. As two 
boundary conditions are specified on the physical 
boundary, the finite difference expressions of the 
differential equations associated with the boundary 
conditions are applied to the same point on the boundary. 
So, two linear algebraic equations are assigned to a single 
point on the boundary. The computer program [15] is 
organized in such a way that out of two equations, one is 
applied to the physical boundary grid point and the other 
is applied to a point exterior to the physical boundary. 
The discretized form of bi-harmonic equation in terms of 

ψ applied to any interior point will give rise a single 
algebraic equation. Therefore, a system of the algebraic 
equations has been solved by lower-upper decomposition 
method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Elastic problem with boundary conditions for 
uniform tensile load (profile H/h = 2.00; r/h =1.00). 

 
 
6. RESULTS AND DISCUSSION 
     For the body under uniform tension the variation of 
stress concentration factor (Kt) as a function of fillet 
radius and thickness is presented in Fig 3. It is observed 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Stress concentration factor (Kt) vs. r/h plot under 

uniform tensile load. 
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that the values of Kt obtained for H/h = 2.25 and H/h = 
2.00 are almost identical throughout r/h ratios. So for 
stepped bar under uniform tensile loading, the thickness 
ratios has no significant effect on the stress concentration. 
Value of Kt rises with decreasing fillet radius. At r/h=0 
complete sharp corner is produced. Maximum stress 
concentration found at that point is about 3.2. For r/h > 
0.6, the stress concentration factor is insignificant and 
found very close to unity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Stress concentration factor (Kt) vs. r/h plot under 

bending moment. 
 
The variation of stress concentration factor (Kt) for the 
stepped cantilever has been presented in Fig 4. as a 
function of fillet radius (r/h) and thickness ratio (H/h). 
Critical section for calculation of stress concentration 
factor has been observed at the root of smaller dimension 
of the rectangular bar. From the figure it is observed that 
the stress concentration factor increases with the increase 
in thickness ratio (H/h) and decreases with the increase in 
fillet radius. For a fillet ratio, r/h = 0.5 and for thickness 
ratios, (H/h=) 2.0 and 2.5 the stress concentration factors 
are 2.2 and 6.96 respectively. So, the thickness ratios 
play a vital effect on the stress concentration factor for 
body under bending. From the trend it is also clear that 
the variation of stress concentration factor is very high 
for r/h < 0.4. At r/h = 0 sharp corner is produced at the 
root of smaller dimension. Maximum stress 
concentration is found at that point but it is not presented 
here.  
     Figure 5 shows the comparison of Kt found from the 
present study with that found in the experiment by 
Weibel [5]. It is noteworthy that in Weibel study the 
stepped bar was doubly filleted. The comparison shows 
that up to r/h = 0.5 two results are almost identical. Some 
discrimination has been found if Weibel’s curve is 
extended further for r/h > 0.5. In the Weibel’s result it is 
also seen that for H/h = 1.5 and H/h = 3.00 there is almost 
no difference on values of Kt which fact is also in 
agreement with the present study. 
     In Fig 6 comparison of stress concentration is also 
made with the results of brittle material obtained by 
Anita Noble [16]. In our study we used the material 
whose poison’s ratio is 0.3. Anita claims that the 

maximum stress concentration factor results in a value 
less than that found for the theoretical value. Since brittle 
materials cannot plastically deform, the stress raisers will 
create the theoretical stress concentration situation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Comparison of our result with Weibel’s result  
for Kt. 

             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Comparison the result with result obtained by 
Anita Noble. 

 
     For between r/h > 0.4 this two solutions are almost 
identical but for lower value of r/h, the value of Kt found 
by the present study is higher than Anita’s results for Kt. 
This difference is due to the difference in material and 
geometry. 
 
7. CONCLUSIONS 
     From the figures it is observed that stress 
concentration varies with the fillet radius in such a 
manner that highest stress developed at zero fillet radius 
as sharp corner is produced. There is very low effect on 
stress concentration in higher radius ratios. The 
philosophy of the present program using formulation of 
displacement potential function ψ is such that it 
encompasses all sort of practical considerations, 
including sharp discontinuities and mixed mode 
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boundary conditions.   So, procedure of the solution for 
stress concentration factor obtained in this paper in the 
rectangular stepped bar can be applied to determine Kt in 
any kind of arbitrary shaped object. As superiority of the 
present solution scheme over the existing approaches is 
its ability in satisfying the boundary conditions exactly, 
the solutions for Kt obtained by the present program are 
promising and satisfactory for the entire critical region of 
interest. Therefore, this study eliminates the use of 
experimental techniques especially the photo-elastic 
method. 
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9. NOMENCLATURE 
 

Symbol Meaning Unit 
k Mesh length in x and y 

direction 
(m) 

r Fillet radius (m) 
E Modulus of elasticity (Pa) 

ψ (x,y) Displacement potential 
function 

- 

µ Poisson’s ratio - 
u Displacement component in 

x-direction 
(m) 

v Displacement component in 
y-direction 

(m) 

σx Stress component in 
x-direction 

(Pa) 

σy Stress component in 
y-direction 

(Pa) 

un Displacement component 
normal to the boundary 

(m) 

ut Displacement component 
tangential to the boundary 

(m) 

σn Stress component normal to the 
boundary 

(Pa) 

σt Stress component tangential to 
the boundary 

(Pa) 

σ xy       Shear Stress component in 
xy-plane 

(Pa) 

φ (x,y) Airy’s stress function - 
H Larger dimension of stepped 

bar 
(m) 

h Smaller dimension of stepped 
bar 

(m) 

b         Length of stepped bar (m) 
Kt Stress concentration factor - 

 
 


