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1. INTRODUCTION 
     Rubber tires are considered as one of the 
indispensable components of almost all categories of 
automotive vehicles. Technical reporting on the analysis 
and design of rubber tires and treads for various 
automotive vehicles is quite extensive [1-11] and [13-14].  
Luper H. et al. [1] stated TROWS (Tire and road wear 
and slip assessment). One of the TROWS objectives is to 
provide a tool table to numerically predict tire global 
wear as well as to qualitatively determine the wear 
distribution. Han Y. H. et al. [2] presented a new 
three-dimensional finite element local model to calculate 
the energy release rate at the belt region. Colby D. et al. 
[3] analyzed on pattern recognition for classification and 
matching of car tires. Kao B.G. et al. [4] studied the 
bushing analogy Tire (BAT) model for tire dynamics 
modeling in vertical and lateral directions cover the tire 
modes in those directions up to about 100 HZ. Hall W. 
and Mottram J. T [5] developed tire modeling 
methodology with the explicit finite element code 
LS-DYNA. This model was applied for static and 
dynamic conditions separately. Olatunbosum O. A. and 
Bolarinwa O. [6] presented a three dimensional finite 
element tire model developed using ABAQUS, a 
commercial finite element code for use in the 

development of new tire designs and  simulation of 
vehicle. Chen B. [7] analyzed material characterization 
of tire cords and the effects of cord thermal mechanical 
properties on tire by using finite element method. A 
number of authors have focused, especially, on the 
analysis of stresses and deformed shapes of reinforced 
tires by finite element method [8-11]. Some of the papers 
[10-11] considered the static tire contact problem for 
obtaining the deformation patterns and stress-state in the 
tire cross-section without paying attention to the bending 
effect of the reinforced cords. Taking the bending effect 
into consideration and laying emphasis on it during shear 
deformation of elements, Huh and Kwak [9] developed 
the expressions of effective material properties of rubber 
composites, and applied to the inflation and contact 
problem of reinforced tire. Wang et al. [10] reported an 
experimental stress-strain analysis by means of the 
Moire method in the area of the shoulder region of a 
retreaded tire section. They also presented a comparison 
of the experimental results with those obtained by finite 
element method. The specimen for the experiment was a 
cross-sectional slice of a retreaded truck tire.  Some of 
the papers [13-14] presented mechanical properties of 
tire rubber and optimization of the size of tire treads.  
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     The present paper describes a new numerical 
approach to predict the optimum shapes of tire treads 
considering three different tire materials by using the 
displacement potential formulation. 
 
2. DISPLACEMENT POTENTIAL FORMULATION 

FOR THE PROBLEM  
      In order to formulate the two dimensional elastic 
problems in terms of displacement potential function, ψ, 
both the equilibrium equations and the boundary 
conditions are required to be expressed in terms of the 
displacement components ux and uy. In absence of body 
forces, the equilibrium equations for two-dimensional 
elastic problems in terms of displacement components 
are, 
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Where ux and uy are the displacement components of a 
point in the x and y directions, respectively. These two 
homogeneous elliptical partial differential equations with 
the appropriate boundary conditions should be sufficient 
for the evaluation of the two functions ux and uy, and the 
knowledge of these functions over the region concerned 
will uniquely determine the stress components. 
     Although the above two differential equations are 
sufficient to solve mixed boundary-value elastic 
problems, but in reality, it is difficult to solve for two 
functions simultaneously. So, to overcome this difficulty, 
equations (1) and (2) are converted into a single equation, 
using a potential function. If a function is defined in 
terms of the displacement components ux and uy, then the 
determination of that function uniquely determines the 
stress functions sought for. The present potential function 
approach involves investigation of the existence of a 
function defined in terms of the displacement 
components. In this approach, as in the case of Airy’s 
stress function, the problem is reduced to the 
determination of a single variable. The potential function 
ψ (x,y) is defined in terms of displacement components 
as, 
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With this definition of ψ(x, y), the first of the two 
equations (1) and (2) is automatically satisfied. 
Therefore,ψ has only to satisfy the compatibility 
equation. Expressing this equation in terms ψ, the 
condition that ψ has to satisfy becomes, 
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     In order to solve the problem in terms of the potential 
The boundary conditions should also be expressed in 
terms of ψ. The boundary conditions are prescribed as  
known restraints and loadings, that is, known values of 
components of stresses and displacements on the 
boundary. The relations between the known functions on 
the boundary and the function ψ (x,y) are   
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3. SOLUTION PROCEDURE  
 
3.1 Method of Solution 
     The mixed boundary value problem is unquestionably 
beyond the scope of pure analytical methods of solutions. 
Thus numerical solution for this class of problems is the 
only plausible approach. Here, finite difference 
technique is used to discretize the bi-harmonic partial 
differential equation and also the differential equations 
associated with the boundary conditions. The discrete 
values of the displacement potential function ψ(x,y), at 
the mesh points of the domain Fig.1(b) concerned, is 
solved from the system of linear algebraic equations 
resulting from the discretization of the bi-harmonic 
equation and the associated boundary conditions. 
 
3.2 Discretization of the Domain 
     According to the usual practice, the region in which a 
dependent function is to be evaluated is divided into a 
desirable number of mesh points and the values of the 
function are sought only at these mesh points. The 
present program is to solve a function within a stepped 
rectangular region, which is divided into meshes with 
lines parallel to rectangular co-ordinate axes. As a result, 
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the boundary may not always pass through the mesh 
points of rectangular networks. But the physical 
problems are associated with the known boundary 
conditions at the boundary points of arbitrary shaped 
bodies. It requires a further treatment to relate the values 
on the boundary with the field grid points. The governing 
bi-harmonic equation, which is used to evaluate the 
function ψ at the internal mesh points, is expressed in its 
corresponding difference equation using central 
difference operators. When all the derivatives present in 
the bi-harmonic equation are replaced by their respective 
central difference formulae, the complete finite 
difference expression for biharmonic equation becomes  
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3.3 Management of Boundary Conditions  
    Normally, the boundary conditions are specified either 
in terms of loadings or of restraints or of some 
combination of two. Each mesh point on the physical 
boundary of the domain always entertains two of the four 
possible boundary conditions at a time namely, (1) 
normal stress and shear stress; (2) normal stress and 
tangential displacement; (3) shear stress and normal 
displacement; (4) normal displacement and tangential 
displacement. The computer program is organized here 
in such a fashion that, out of these two conditions, one is 
used for evaluation of ψ at the concerned boundary point 
and the other one for the corresponding point on the 
exterior false boundary. Thus, when the boundary 
conditions are expressed by their appropriate difference 
equations, every mesh point of the domain will have a 
single linear algebraic equation tagged to it for its 
evaluation.The boundary of the tread section is divided 
into four segments, namely, (a) the top-left, (b) the 
bottom left, (c) the bottom right, and (d) the top right. 
Four different sets of boundary expressions are used for 
the four segments. 
 
4. RESULTS AND DISCUSSION 
     For the solution of the problem, three different tire 
materials are taken such as Natural rubber, Retreaded 
rubber and Truck tire rubbers which exist three different 
mechanical properties. These mechanical properties are 
found by experimentally which require for the solution of 
the problem.  At first the contact surface of the boundary 
is assumed to be smooth and secondly it is assumed that 
the contact surface of the tread with the road exist no 
slipping.  
 
 
 
 

Table 1: Mechanical properties of different Tire material 
 

Tire material Natural 
rubber 

Truck Tire 
Tread rubber 

Retreaded 
rubber 

Modulus of 
Elasticity 
(kPa) 

4854 7031 
 

8855 

Poisson’s 
ratio 

0.50 0.43 0.40 

 
Table 2: Boundary conditions of different boundary 
segment of the tread section considering no frictional 
effect of the contact surface with the road 
 

Boundary 
segment 

Given 
boundary 
conditions 

Physical 
boundary 
conditions 

False 
boundary 
conditions 

AB un, ut  ut un 
BC σn, σt σn σt 
CD σn, σt σn σt 
DE un, σt un σt 
EF un, ut ut un 
FG un, σt un σt 
GH σn, σt σn σt 
AH σn, σt σn σt 

 
Table 3: Boundary conditions of different boundary 
segment of the tread section considering no slipping 
action of the contact surface with the road 
 

Boundary 
segment 

Given 
boundary 
conditions 

Physical 
boundary 
conditions 

False 
boundary 
conditions 

AB un, σt  σt un 
BC σn, σt σn σt 
CD σn, σt σn σt 
DE un, σt un σt 
EF un, ut ut un 
FG un, σt un σt 
GH σn, σt σn σt 
AH σn, σt σn σt 
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Fig 1(a). Boundary conditions and values of the Tire 
Tread section for the frictionless contact surface
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Fig 1(b). Application of the stencils of stress boundary 

conditions at different corners of the tread section 
 
4.1 Solution of Tire Tread Contact Problem of 

Different Tire Material  
 
(a) Considering no frictional effect of the 
contact surface of the tire tread with the road 
     In this section, the tire-tread contact problem is 
obtained without considering the influence of friction on 
the tread surface in contact. For the analysis, three 
different tire materials are considered such as Natural 
rubber, Truck tire rubber and Retreaded rubber. That is, 
the tread contact surface will be allowed to deform both 
normally and laterally, without experiencing any 
frictional resistance from the road. It is important to note 
that the corresponding deformed shapes of the tire tread 
of three different tire material gives the basis for the 
determination of optimum sizes of tire treads for the tire 
tread of three different tire material. The geometry and 
loadings used for the solution of the frictionless tire-tread 
stress problem is shown in Fig.1(a). The mechanical 
properties of three different tire materials are shown in 
Table 1. The relevant boundary conditions, which have 
been satisfied by different segments of the tread section 
considering no frictional effect as well as no slipping 
effect are listed in Tables 2 and 3 respectively.  
     The uniform normal displacement considered in the 
present analysis corresponds to the internal inflation 
pressure of the tire, for example 690 kPa. The deformed 
shapes of the tire tread of three different tire material are 
shown in Fig.2(a). Figure 2(b) describes the distribution 
of the lateral displacement along the contact boundary of 
the tread (a/b=2.1) under frictionless slipping. At the 
middle portion of the contact surface of each tread 
section, the lateral displacement is zero. 
      At first half portion of the contact surface, the lateral 
displacement is negative and at the second half portion of 
the contact surface, the lateral displacement is positive. 
The lateral displacement of the tire tread of natural 
rubber is very high and the lateral displacement is lower 
for the tire tread of retreaded rubber and the lateral 
displacement of the contact surface of the truck tire tread 

remains between them.  
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Fig 2(a). Deformed shapes of tire treads of different 
materials under the contact pressure of 690 kPa 
considering frictionless slipping 
 

        
Fig 2(b). Distribution of the lateral displacement along 
the contact boundary of the treads (a/b=2.1) under 
frictionless slipping 
 
(b) No- slip condition of the contact surface of 
the tire tread with the road 
     The no slip condition of the contact boundary is 
actually referred to the case where the lateral 
displacement of the boundary, caused by the application 
of the uniform normal compression from the road surface, 
is restrained. Figure 3(a) illustrates the effect of tire 
material on the deformed shape of the tread section under 
no-slip condition of the  contact  boundary.  The  normal  

            
Fig 3(a). Effect of tire material on the deformed shape of 
the tread section under no-slip condition of the contact 
boundary (displacement magnified 3 times) 
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displacement of the tire tread of natural rubber is very 
high, is very low for the tire tread of retreaded rubber and 
the normal displacement of the contact surface of the 
tread of truck tire rubber remains between them. There is 
also significant material effect on the normal 
displacement of the skid surface (AH; as shown in 
Fig.1(a)) of the tread section. 
 
4.2 Determination of Optimum Tread Shapes 

Considering Different Tire Material 
     An analysis of the maximum stress presented in 
Fig.3(b) reveals that the maximum shear stress increases 
almost linearly with the decrease of aspect ratio and then 
remains nearly constant for the lower aspect ratios when 
the contact length is fixed. For a particular size of tire 
tread, the maximum shear stress is maximum for the tire 
tread of natural rubber and lower for the tire tread of 
retreaded rubber and the maximum shear stress of truck 
tire tread remains between them. 

 
     Figure 3(c) describes the calculated maximum 
coefficient of friction of tread sizes for different tire 
materials when the contact length is fixed. Here, 
according to the Coulomb’s law of friction, the 
calculated coefficient of friction is obtained by dividing 
the shearing stress developed on the contact surface by 
the contact pressure. Table 4 lists some of the coefficients 
of friction for different kinds of tire with the road surface 
at different speed as well as for different conditions. A 
value of coefficient between the road and the contact 
surface of smooth truck tire, for example, 0.28, divides 
the treads in Figs.3(c) and 3(d) into two categories. In 
Fig.3(a), the left and right portions of the vertical line 
correspond to the tread sections experiencing partial slip 
and no-slip conditions respectively.  The sizes of a tire 
tread for three different tire material remains in the 
no-slip region, there occurs no slip on the contact surface. 
For no slipping condition, there is larger aspect ratio for 
the tire tread of Natural rubber, lower aspect ratio of 
retreaded rubber and the aspect ratio for the tire tread of 
truck tire rubber remains between them. Figure 3(d) 
describes the calculated maximum coefficient of friction 
as a function of tread sizes for three different tire 
materials when the skid depth is kept fixed.   The size of a 
tire tread for three different tire material remain in the 
no-slip zone, there occurs no slip. For no slipping 

condition, there is also small aspect ratio for the tire tread 
of natural rubber and higher aspect ratio for the tire tread 
of retreaded rubber and the aspect ratio for the tire tread 
of truck tire rubber remains between them. 

 
 

 
 
Table 4: Coefficient of friction by the tests of The 
Goodrich Company on wet pavement with tires of 
different treads [12] 

 
 

Condition 
Static (before 

slipping) 
Sliding (before 

slipping) 

Speed 
(mile/ h) 

5 30 5 30 

Smooth tire 0.49 0.28 0.43 0.26 
Circumferential 
groove 

0.58 0.42 0.52 0.36 

Angular grooves 
at 600 

0.75 0.55 0.70 0.39 

Angular grooves 
at 450 

0.77 0.55 0.68 0.44 
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5. CONCLUSIONS 
     No serious attempt has been reported so far in the 
literature that can provide a useful analysis of the tread 
contact problem for suggesting an effective guideline to 
determine the optimum shapes of tire treads considering 
several tire materials. In this analysis it is obviously 
observed that slipary action of the contact surface of the 
tire tread of natural rubber is very high and very low for 
the tire tread of retreaded rubber and the slippery action 
of the contact surface of the tire tread of truck tire 
remains in between them. From the analysis, it is clear 
that, the sizes of the tire tread of three different tire 
materials which remain in the no-slip zone, the contact 
surface of the tire tread does not slip. For the cause of 
slippery action, no wear is concerned in such sizes of tire 
tread of three different tire materials. For avoiding 
slipary action, the skid depth and contact length of the 
tire tread of natural rubber is very larger than that of other 
two different tire material and the skid depth and contact 
length of the tire tread of retreaded rubber is very lower 
than that of other two different tire material. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 

   Ψ(x,y) 
 

Displacement potential 
function - 

E  Modulusof Elasticity MPa 
σn Normal  stress   kPa 
σt Lateral stress kPa 
σxy Shear stress kPa 

ux, uy 
Displacement at x and y 

direction m 

un, ut 
Normal and Lateral 

displacement m 

a Contact length m 

b Skid depth m 
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