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1. INTRODUCTION 
     Elasticity problems are usually formulated either in 
terms of stress function or displacement parameters. 
Timoshenko and Goodier [1] considered stress function 
formulation and Uddin [2] considered displacement 
parameters to solve various boundary-value problems of 
elasticity. Successful application of the stress function 
formulation in conjunction with finite-difference 
technique has been reported by Chow et al. and Chapel 
and Smith [3-4] for the solution of plane elastic problems 
where all the conditions on the boundary are prescribed 
in terms of stresses only. Further, Conway and Ithaca [5] 
extended the stress function formulation in the form of 
Fourier integrals to the case where the material is 
orthotropic, and obtained analytical solutions for a 
number of ideal problems. The shortcoming of the stress 
function approach is that it treats boundary conditions in 
terms of loading only. Boundary restraints specified in 
terms of the displacement components cannot be 
satisfactorily treated by the stress function. As most of 
the practical problems of elasticity are of mixed 
boundary conditions, the stress function approach fails to 
provide any explicit understanding of the state of stresses 
at the critical regions of supports and loadings. The 
displacement formulation, on the other hand, involves 
finding two displacement functions simultaneously from 
the two second-order elliptical partial differential 
equations of equilibrium, which is extremely difficult, 
and the problem becomes more serious when the 
boundary conditions are mixed [2]. The difficulties 
involved in trying to solve practical stress problems 

using the existing models are clearly pointed out by 
Durelli and Ranganayakuma [6]. 
     As stated above, neither of the formulations is suitable 
for solving the problems of mixed boundary conditions. 
Hence a new mathematical model is an utmost necessary 
to solve the mixed boundary-value problems of elasticity. 
In three of our earlier papers [7, 8, 9], the displacement 
potential approach, a new technique to solve mixed 
boundary-value problems, was applied to analyze the 
elastic field  in a stiffened composite bar subjected to 
loading in the direction parallel and perpendicular to the 
fibers. In that approach, the plane elasticity problems 
were formulated in terms of a single displacement 
potential function of space variables. The approach was 
verified to be efficient in managing mixed mode of 
boundary conditions as well as their zones of transition. 
The present paper demonstrates the application of the 
displacement potential approach to the analytical 
solution of a stiffened column of orthotropic composite 
material subjected to a compressive load over central half 
of the tip. The supporting edge of the column is assumed 
to be rigidly fixed and the two opposing edges are 
stiffened. The solutions are obtained in the form of an 
infinite series and the corresponding distributions of 
different stress and displacement components are 
presented mainly in the form of graphs. 
 
2. ANALYTICAL MODEL OF THE PROBLEM 
     With reference to the Cartesian coordinate system x–y, 
a stiffened column of composite materials is shown in 
Fig. 1. The fibers are directed along the height of the 
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column. The bottom edge is rigidly fixed to a support and 
the opposing edges are stiffened. The height and the 
width of the column are designated by b and a, 
respectively. The central half of the tip of the column is 
subjected to a compressive axial load xxσ , which is a 
function of y only. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
     For this model of the problem, different stress and 
displacement components are calculated at different 
critical sections of the column using the method of single 
displacement potential function. 
 
3. DISPLACEMENT POTENTIAL FORMULATION   

FOR THE PROBLEM 
     With reference to a rectangular Cartesian coordinate 
system and in the absence of body forces, the equilibrium 
equations are given by [1] 
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To express the equilibrium equations in terms of 
displacement components, we need to express the three 
stress components in terms of displacement parameters. 
The corresponding three stress-displacement relations 
for general orthotropic materials are obtained from the 
Hooke’s law as follows [10] 
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     Substituting the above stress-displacement relations 
into Eqs. (1a) and (1b) and using the reciprocal relation 

211122 µEµE = , we obtain the two equilibrium 
equations for two-dimensional problems of orthotropic 
materials in terms of the two displacement components 
as  
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In the present study, a new displacement potential 
function ψ (x,y) is  defined in terms of the two 
displacement components as follows: 
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     With the above definition of ψ (x, y), the first 
equilibrium equation 3(a) is automatically satisfied. 
Therefore, ψ has to satisfy the second equilibrium 
equation 3(b) only. Expressing Eq. 3(b) in terms of the 
displacement potential function ψ, the condition that ψ 
has to satisfy is 
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4. SOLUTION OF THE PROBLEM 
    For the model shown in Fig.1, the stiffened column is 
considered to be of unit thickness and the potential 
function ψ is assumed to be 
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Fig 1. Analytical model of the problem 
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where Xm is a function of x only and α = mπ/a. Thus, Xm 
has to satisfy the ordinary differential equation 
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where the (′) indicates differentiation with respect to x. 
The general solution of this differential equation can be 
given by: 
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Here Am, Bm, Cm,  and Dm are constants. Now combining 
Eqs.(2), (4), (6), and (8), the expressions of stress and 
displacement components are obtained as follows: 
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For the present problem, the following boundary 
conditions are available: 
 

0=xu , 0=yyσ  at y=0 and a                                  (16) 
 

0)0( =y,ux , 0)0( =y,uy                                            (17) 
 
It is seen that the boundary conditions given by Eq. (16) 
are satisfied automatically. 
     Now, the axial compressive loading on the tip, x = b, 
of the column can be expressed mathematically as 

follows: 
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     where P is the axial compressive load distributed over 
the region from y=a / 4 to 3a /4 . From Fourier integral 
formula, it can be written that 
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The shear stress at this boundary is 
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     By applying the associated boundary conditions in  
relevant equations,  we get the following four equations 
in terms of the four unknowns Am, Bm, Cm, and Dm: 
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The above four simultaneous algebraic equations 
20(a)-20(d) can further be realized in a simplified form 
for the solution of the unknowns as follows: 
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5. RESULTS AND DISCUSSION   
     In this section, numerical results are presented for a 
Boron / Epoxy unidirectional composite column. The 
effective mechanical properties of the Boron / Epoxy 
composite are E1=28.29x104 MPa, E2=2.415x104 MPa, 
µ12=0.27 and G12= 1.035x104 MPa. Furthermore, the 
aspect ratio of the column used in obtaining the results is 
taken as b /a=3.0. 
 
 

 
Fig 2(a). Distribution of normalized displacement 

component (ux/a) at different sections of the column. 
 

      The variation of the normalized axial displacement 
component with y is shown in Fig. 2(a). The axial 
displacement is negative and symmetric. At the 
supporting edge and stiffened edges of the column, the 
axial displacement is zero, which satisfies the physical 
boundary condition of the problem. For each section, the 
axial displacement is maximum at the center of the 
section i.e. at y/a=0.5. Furthermore, the axial 
displacement decreases as x/b decreases for a fixed value 
of y/a. 
     Figure 2(b) illustrates the variation of normalized 

lateral displacement component with y at different 
sections of the column. Except the tip and its adjoining 
few sections of the column, the lateral displacement is 
zero for all of the sections. The lateral displacement is 
antisymmetric. 
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Fig 2(b). Distribution of normalized lateral displacement 
component (uy/a) at different sections of the column. 
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Fig 3(a). Distribution of normalized axial stress 
component ( xxσ /P) at different sections of the column. 

 
     Figure 3(a) illustrates the distribution of normalized 
axial stress component with the variation of y at different 
sections of the column. At and near the tip of the column, 
the stress distribution is almost uniform over the central 
half of the tip. There is a small fluctuation in the stress 
distribution for x/b=1.0, which may occur due to the error 
in numerical computations. At the tip (x/b=1.0) and its 
few adjoining sections, the axial stress sharply reduces to 
zero after the central half of the tip. For the sections at 
and near the fixed support, the axial stress gradually 
reduces from a maximum value at the center of the tip to 
zero at the stiffened edges. 
     Figure 3(b) is the distribution of normalized lateral 
stress vs. y at different sections of the column. This stress 
distribution is also symmetric with respect to y. Further, it 
is noted that at the two stiffened edges (y/a=0 and 
y/a=1.0), the lateral stress is zero, which satisfies the 
physical boundary conditions. Towards the supporting 
edge of the column, the lateral stress decreases. 

Normalized position (y /a) 

0.0 0.2 0.4 0.6 0.8 1.0

A
xi

al
 d

is
pl

ac
em

en
t, 

(u
x /

a)
x1

04   

-4

-3

-2

-1

0

1
x/b=1.0

x/b=0.96
x/b=0.92
x/b=0.77

x/b=0.54
x/b=0.19 x/b=0.00

Fi 2( ) Di t ib ti f li d di l t t



© ICME2005  AM-12 5

Normalized position (y / a)

0.0 0.2 0.4 0.6 0.8 1.0

La
te

ra
l s

tre
ss

, (
σ y

y /
 P

)

-2

-1

0

1

x/b=1.0 x/b=0.96

x/b=0.92 x/b=0.77

x/b=0.54 x/b=0.19

x/b=0.00

 
 

Fig 3(b). Distribution of normalized lateral stress 
components ( yyσ /P) at different sections of the column. 
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Fig 3(c). Distribution of normalized shear stress 

component ( xyσ /P) at different sections of the column. 
 
      The distribution of normalized shearing stress as a 
function of x and y is shown in Fig.3(c). At x /b=1.0, i.e. 
at the tip of the column, the shearing stress is zero, which 
satisfies the physical boundary conditions of the problem. 
Except the tip (x/b=1.0), there develops a considerable 
amount of shear stress which is distributed 
antisymmetrically along y. It is worthy to mention that 
although the axial and lateral stresses are zero at the fixed 
support (x/b=0.0), there develops a significant amount of 
shear stress at this support. 
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Fig 4. Distribution of normalized axial stress component 

( xxσ /P) at the section x/b=0.50 of the column of 
different composites. 

     Figure 4 illustrates the normalized axial stress 
component at the section x/b=0.5 of the column of 
different composites. The axial stress is maximum for the 
column of Graphite / Epoxy, minimum for the column of 
Glass / Epoxy, and medium for the column of Boron / 
Epoxy. Figure 5 illustrates the distribution of the lateral 
stress at the section x/b=0.5 of the column of different 
composites. The lateral stress is maximum for the 
column of Glass / Epoxy, minimum for the column of 
Graphite / Epoxy, and medium for the column of Boron / 
Epoxy.     Figure 6 illustrates the normalized shear stress 
component at the section x/b=0.5 of the column of 
different composites. The shear stress is maximum for 
the column of Graphite / Epoxy, minimum for the column 
of Glass / Epoxy, and medium for the column of 
Boron/Epoxy.  
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Fig 5. Distribution of normalized lateral stress 
component ( yyσ /P) at section x/b=0.50 of the column of 
different composites. 
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Fig 6. Distribution of normalized shear stress component 
( yyσ /P) at section x/b=0.50 of the column of different 
composites. 
 
6. CONCLUSIONS 
     A new displacement potential approach has been used 
to analyze the states of stresses and displacements in a 
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stiffened column of orthotropic composite material with 
mixed boundary conditions. The distinguishing feature 
of the present ψ-formulation over the existing approaches 
is that all modes of boundary conditions can be satisfied 
exactly, whether they are specified in terms of loading or 
physical restraints or any combination of them. The 
numerical results obtained by using the present approach 
conform to the physical phenomena of the problem. Thus, 
it is verified that the present approach is reliable and 
satisfactory in order to apply it in mixed boundary 
conditions of elastic problems.  
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8. NOMENCLATURE 
 

Symbol Meaning Unit 

ψ (x,y) Displacement 
potential functio 

- 

 
E1 

Elastic modulus in 
longitudinal  

direction 
MPa 

  
E2 

Elastic modulus in 
transverse direction MPa 

 
G12 Shear modulus   MPa 

µ12 Major Poison’s ratio - 
µ21 Minor Poison’s ratio - 
σxx Axial stress kPa 
σyy  Lateral stress  kPa 
σxy Shear stress kPa 

P Axial  compressive 
load kPa 

I0, Im Constants - 
Am, Bm, Cm, Dm, B Constants - 

ux  Axial displacement m 

uy 
Lateral        

displacement m 

a Width of the column m 

b Height of the 
column m 

 
 


