
Proceedings of the 
International Conference on Mechanical Engineering 2005 

(ICME2005) 28- 30 December 2005, Dhaka, Bangladesh 
 

ICME05-AM-14 

© ICME2005 1   AM-14 

 
 
 
 

 

 
1. INTRODUCTION 
     Designing of machine components requires precise 
information of stress formulations over its entire body 
especially at the critical regions. Most of the practical 
problems appear with arbitrary shaped boundary and 
loading conditions may differ in problem to problem. But, 
stress analysis of elastic bodies of arbitrary shape is not 
easy task. The management of boundary shape and 
mixed boundary conditions is a difficult task for such 
bodies [1-4]. Elastic problems are formulated either in 
terms of deformation parameters or stress parameters. 
But, at the boundary, all the problems are invariably 
subjected to the mixture of both known deformations and 
stress. Neither of the two formulations would however 
allow us to account fully of both of these two types of 
boundary conditions with equal sophistication in the 
region of transition of boundary conditions from one type 
to another.  
     Displacement potential function formulation [5] is 
well known for the analysis of two-dimensional mixed 
boundary-value elastic problems. Using this formulation 
in conjunction with finite-difference technique Idris et al. 
[6-7] established the validity of the potential function by 
solving some simple problems. Later, a numerical model 
for solving simple rectangular body has been proposed 
by Ahmed et al. [8-11]. The accuracy and the reliability 
of the numerical model has been verified through 
subsequent advancements of the technique from 
rectangular to arbitrary shaped bodies [12-14]. In order 
to deal with the arbitrary shape of the boundary, the 
boundary values at point not coinciding with the 
rectangular nodal points are approximated by the linear 

interpolation of two or four neighboring nodal points.  
     The Numerical models in Finite Difference Technique 
developed so far are limited to the solution of solid 
elastic bodies i.e. body without any internal holes or 
flaws. Elastic body having internal hole or flaw poses a 
serious problem as it suffers stress concentration at the 
hole boundary. In finite difference technique, stress 
analysis of such a body becomes more complex due to 
management of boundary conditions at the external as 
well as at the internal boundary. In this paper, a numerical 
model has been proposed to solve problems of this nature. 
To examine the accuracy of the proposed method of 
solution in compared to the available theoretical and 
experimental results a rectangular plate having internal 
circular hole has been solved under tensile loading. The 
results are found in good agreement with the analytical 
solution.  
 
2.  DESCRIPTION OF THE PROBLEM AND 

BOUNDARY CONDITIONS 
     The geometry of the problem is shown in Fig 1. The 
geometry can be expressed as b/a = 2.5, r/a = 0.25. 
 
2.1 Material  
     The material is assumed perfectly elastic and was 
given the property of material with Poisson’s ratio ν is 
assumed 0.3. Despite the choice, this procedure is also 
valid for other materials. 
 
2.2 Boundary Conditions  
     The boundary conditions of the chosen problem are 
shown in Fig 2. Boundary AB is considered rigidly fixed. 
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So there will be no displacement in this part of the 
boundary and thus the boundary conditions are set as 
un=0.0, ut=0.0. At the right boundary (CD) uniform 
tensile load is applied. For this boundary for every nodal 
points the boundary conditions are set as σn/E=3×10-4, 
σt/E = 0.0, where the symbol E denotes modulus of 
elasticity. 
 

     
 

Fig 1. Geometry of the problem      
 

       
 

Fig 2. Boundary condition applied to the problem 
 
     The top and bottom boundaries (AD and BC) are free 
from stress. The boundary conditions for the free 
boundary are set as σn/E = 0.0, σt/E = 0.0 
     The surface of the internal hole is free from any 
external load; boundary conditions are, therefore, 
assigned as σn/E = 0.0, σt/E = 0.0. 
 
3. EQUATIONS USED 
 
3.1 Governing Equations 
     Stress analysis of an elastic body is usually a three 
dimensional problem. But, most of the practical 
problems appear usually in the state of plane stress or 
plane strain. Stress analysis of three-dimensional bodies 
under plane stress or plane strain can be treated as 
two-dimensional problems. The solution of 
two-dimensional problems requires the integration of the 
differential equations of equilibrium together with the 
compatibility equations and the boundary conditions. If 
body force is neglected, the equations to be satisfied are 
[1]  
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     Substitution of stress components by displacement 
components u and v into Eqs. (1) to (3) makes Eq. (3) 
redundant and Eqs. (1) and (2) transform to  
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     Now the problem is to find u and v from a two 
dimensional field satisfying the two elliptical partial 
differential Eqs. (4) and (5). 
     Instead of determining the two functions u and v the 
problem can be reduced to solving a single function ψ(x, 
y), which can be determined by satisfying Eqs. (4) and 
(5). The displacement potential function ψ(x, y) can be 
defined as [6] 
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     By the above definitions the displacement 
components u and v satisfy Eq. (4) and the only condition 
reduced from Eq. (5) that the function ψ(x, y) has to 
satisfy is  
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     So, now the problem is to evaluate a single function 
ψ(x, y) from the bi-harmonic Eq. (7), satisfying the 
boundary conditions specified at the boundary. 
 
3.2 General Boundary Conditions  
     The boundary conditions at any point on an 
arbitrary-shaped boundary are known in terms of the 
normal and tangential components of displacement, un 
and ut, and of stress, σn and σt. These four components 
are expressed in terms of u, v, σx, σy, σxy the components 
of displacement and stress with respect to the reference 
axes x and y of the body as follows: 
 
un = u.l + v.m                          (8) 

ut = v.l - u.m    (9) 

σn = σx.l2+2.σxy.l.m+σy.m2                 (10) 

σt = (l2-m2)σxy +l.m(σy-σx)                   (11) 
 
     At any point on the physical boundary, the boundary 
conditions are specified in terms of any two known 
values of un, ut, σn andσt. 
     In order to solve the mixed boundary-value problems, 
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all the boundary conditions are to be expressed in terms 
of function ψ(x, y). The displacement components un, ut 
as a function of ψ(x, y) can be obtained by using Eqs. (6), 
(8) and (9). The stress components in Eqs. (10) and (11) 
can be obtained in terms of ψ(x, y) using following 
expressions of rectangular stress components. 
 
 
 
 

           (12) 

 

  

 
 
 
 
     As far as numerical method of solution of equation (7) 
is concerned, it is evident from the expressions of 
boundary conditions (8) to (11) that, regardless of the 
combinations of two conditions specified on the 
boundary, the equations that ψ(x, y) has to satisfy are Eq. 
(7) within the body and any two of the Eqs. (8) to (11) for 
points on the boundary. These equations are expressed as 
finite difference equations in terms of ψ(x, y). 
 
4. SOLUTION TECHNIQUE 
     For solution of the problem the elastic body under 
consideration is divided into a desirable number of 
rectangular meshes and the value of the function is 
sought only at these nodal or grid points of the mesh. The 
present program is to solve a function within a 
geometrically irregular region having internal hole. The 
region is divided into meshes with lines parallel to 
rectangular co-ordinate axes. As a result, the boundary 
may not pass through the rectangular nodal points. But 
the physical problems are associated with the known 
boundary conditions at the boundary points of irregular 
shaped elastic bodies, which require a further treatment 
to relate the values on the boundary with the nodal points. 
To overcome this problem a special technique is used. 
For designating any boundary point, a reference node 
point is used.  
     For any interior mesh point, it is seen that the 
bi-harmonic equation in terms of ψ(x, y) applied to this 
point will give rise to a single algebraic equation and 
therefore, the single unknown concerning this point has 
been provided with a single equation for its evaluation. 
Further, this algebraic equation will contain the 
discretized variable of the thirteen neighbouring mesh 
points [8]. This implies that, for any mesh point, closest 
to the boundary mesh points, this equation will contain 
mesh points both interior and exterior to the boundary. 
Thus, to match the discretized bi-harmonic equation with 
the domain of field grid, at least one exterior point 
immediate vicinity of the boundary should be considered. 
Thus, it is seen that, if the domain is descretized by lines 
parallel to the rectangular co-ordinate system then the 
application of the finite difference formulae of the 
bi-harmonic equation places limitation to the points, 
immediate exterior neighbour-hood of the boundary 
mesh points. Again, the boundary conditions in terms of 

stress and displacement components contain 2nd and 3rd 
order derivatives of ψ(x, y) and the application of the 
boundary conditions at an arbitrary point on the 
boundary will not be very easy without the involvement 
of exterior mesh points to the physical boundary of the 
domain concerned. Considering an arbitrary point on the 
boundary, the boundary conditions may be specified by 
any one of the four groups of boundary conditions, (un, 
ut), (un, σt), (ut, σn) and (σn, σt). Therefore, since the 
functions are not directly specified, there are always two 
conditions to be satisfied at an arbitrary point on the 
boundary and these two conditions are theoretically 
sufficient to provide two equations at this point. In this 
respect, if the boundary conditions are given either in 
terms of displacement or stress components, that is, in 
the form of differential equations of unknown function, 
these differential equations have to be expressed into 
difference equations. 
     As the differential equations associated with the 
boundary conditions contain second and third order 
derivatives of the function ψ(x, y), the application of 
two-point forward or backward difference formula is 
required depending on the position of the boundary.  
 
4.1 Transfer of Boundary Values to Grid Points 

and Placement of Boundary Conditions 
     The details description of the management of outer 
boundary points and their condition are given in our 
earlier studies [12-14]. Here the description of the 
management of internal hole boundary points are given 
as follows.  
 

 
 

Fig 3. Management of hole boundary points 
 
     For describing the management of boundary points 
on the hole boundary, only the top-left portion, PQ (Fig 
1) is selected and its details are presented in Fig. 3. If a 
physical boundary point match with a rectangular grid 
point then this point is considered as the reference point. 
But if physical boundary points do not match with the 
rectangular grid points then the grid points nearest to the 
physical boundary points are selected as the reference 
grid points.  Here the points marked by 1, 2, 3 and 4 are 
the physical boundary points, and the corresponding 
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reference boundary points are 1', 2', 3' and 4' respectively. 
So, 1'-2'-3'-4' is the reference boundary line. The false 
grid points are selected as 1'', 2'' and 3'' thereby the false 
boundary line is 1''- 2''- 3''- 4''. The physical boundary 
points on which this conditions are assigned are selected 
in such a fashion that for each boundary points there 
should be one point on reference boundary and one point 
on the false boundary. 
     As there are always two conditions to be satisfied at 
an arbitrary point on the physical boundary of the domain, 
two finite difference expressions of the differential 
equations associated with the boundary conditions are 
applied to the corresponding points on reference and 
false boundaries. A major problem is faced in 
formulating points on the sharp turning boundary, where 
a reference boundary point exists for which there is no 
corresponding point on false boundary. For such cases 
one or two conditions for a boundary point are found 
redundant. Such as in Fig. 3 for internal hole for 
reference boundary points 4', 5', 6' and 7', the 
corresponding reference points are 4'', 5'', 7'' and 8'' 
respectively. But, for reference point 6' there is no 
corresponding point on the false boundary. So, from the 
two conditions one is considered redundant. The 
treatment of boundary conditions as described using Fig. 
3 covers particularly the portion of the top left boundary 
of circular hole. For the other part of the hole, the 
management of boundary conditions is done in similar 
fashion. A system of linear algebraic equations in terms 
of the function ψ has been obtained by the application of 
the finite difference formula on every mesh points within 
the elastic field. The LU-decomposition method has been 
used for solving the function ψ from the coefficient 
matrix developed by the system of linear equations. Thus 
the parameters of interest u, v, σx, σy and σxy at each nodal 
point in the body and un, ut, σn, and σt at each point on the 
boundary are obtained from the solution of ψ. 
 
5.  RESULTS AND DISCUSSION 
     The solution of the displacement and stress 
components u, v, σx, σy and σxy for each rectangular nodal 
point within the elastic field has been obtained. Their 
distributions along some selected sections as shown in 
Fig. 2 are described below.  
 
5.1 Distribution of u  
     The distribution of displacement component (along x 
axis) u for some selected sections as shown in Fig 4. It is 
observed that the values of displacement component are 
anti-symmetric with respect to the horizontal centerline 
of the body and changes sign from positive to negative at 
horizontal centerline (x/a=0.5). This clearly indicates the 
shortening of the dimension along x direction.  Along the 
centerline there is no displacement along x-axis. It also 
complies with the known solution. The distribution of u 
for section 1 and section 4 coincides with each other 
proves the symmetrical distribution of u around the hole. 
The value of u is larger at the boundary and zero at 
horizontal centerline.  
     Displacement along section-2 across the hole is 
observed maximum. From solution it is found that the 
values of displacement component (u) of left most 

boundary are zero (not plotted here). The values of u for 
this boundary are set zero as boundary conditions. So, the 
solution satisfies the condition assigned on the left 
boundary. It also proves the accuracy of the solution. 
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Fig 4. Distribution of  u 

 
5.2 Distribution of v  
     The Distributions of displacement component along 
y-axis v for different sections are shown in Fig 5. The plot 
shows the symmetrical distribution of v with respect to 
the horizontal centerline (x/a = 0.5). It is found that for 
any section between the hole and the loading boundary 
the value of v is large at the horizontal centerline.  
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Fig 5. Distribution of  v 

 
     For section in the other zone i.e. between the fixed 
boundary and hole, the value of v, is minimum at the 
horizontal centerline. Among the presented sections 
value of v is higher in section 4. It means that the 
displacement is higher in sections nearer to the force. In 
comparing the distribution of u (in Fig 4) and v (in Fig 5) 
it is found that v is very large in magnitude. 
 
5.3 Distribution of σx  
     Distribution of stress components along x-axis is 
shown in Fig. 6. This figure shows that sections 1, 2 and 
4 suffer tension along x-axis. Section 3, that passes the 
right boundary of the hole at point S, suffers compression. 
It also shows that at the hole-boundary at point S, the 
value of stress component is higher than any other points 
for any section. It proves the stress concentration 
phenomena along the hole-boundary.  
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Fig 6. Distribution of σx  

 
     At the top and bottom boundaries (x/a = 0.0 and 1.0) 
the values of stress component are zero. It satisfies the 
boundary condition applied at those boundaries. Sections 
1 and 4 show exactly the same distribution of stresses. 
Maximum compression is observed at point S (σx/E = 
-2.7×10-4). At free boundary points (P and R) the values 
of σx are zero. If there is no hole inside the body then 
whole body will suffer compression along x axis. But due 
to presence of hole inside the body some portion of the 
body near the hole will suffer tension. This is due to the 
fact of flattening of the hole when load applied at the 
right end along y axis. The analytical result [1] shows 
that the value of σx at point S should be equal to the 
applied stress. Here in our solution from Fig 6 it can be 
found that the value of σx at point S is very near to 
3×10-4E (the applied stress). 
 
5.4 Distribution of σy  
     Figure 7 shows the distribution of stress component 
(along y direction) σy. From the distribution of σy, it is 
observed that stress concentration occurs at points P and 
R of the hole-boundary.  
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Fig 7. Distribution of σy 

 
     The distribution of stress component is symmetrical 
around the hole. It is found that in sections 1 and 4 the 
values of stress distribution are completely identical and 
are almost same as the applied stress. So, the distribution 
of stresses varies around the hole and becomes uniform 
large distance away from the hole. This fact satisfies the 
Saint-Venant’s Principle. 

     Figure 7 shows that point P and R are the most critical 
point. According to the analytical results the stress 
developed at these points should be equal to 12.9×10-4E, 
4.3 times the applied stress. The result obtained from this 
scheme is, therefore, very nicely satisfied the analytical 
solution. Figure 7 shows that the stress developed at 
point S is zero which satisfies the free surface conditions. 
 
6. CONCLUSIONS 
     The present technique of finite difference method 
provides analysis of stresses in a body having internal 
circular hole. The results found for hole boundary show 
good agreement with the analytical solution. This 
solution approach is also valid for any arbitrary shape of 
body having arbitrary shaped internal hole. 
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8. NOMENCLATURE 
 

Symbol Meaning Unit 
x, y Rectangular co-ordinates (mm) 
E Elastic modulus of the 

material 
(Pa) 

ν Poisson's ratio (mm/mm)

u, v Displacement component in 
the x and y-direction 

(mm) 

σx, σy, 
σxy 

Stress component in the 
x-direction, y-direction and 
xy-plane 

(Pa) 

ψ Potential function defined in 
terms of displacements 

- 

un, ut  
 

Normal and tangential 
displacement  component on 
the physical boundary 

(mm) 

σn, σt Normal and tangential stress 
component on the physical 
boundary 

(Pa) 

l, m Direction cosines of the 
normal at any point on the 
boundary 

- 

h, k Mesh lengths in the x and 
y-directions 

(mm) 

 


