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1. INTRODUCTION 
     Proving ring is a force measuring instrument whose 
shape changes as diameter deflects elastically under load. 
Applied load is known from its characteristic 
load-deflection curve. As far as studies on ring structures 
are concerned, Reid and Bell [1] pointed out the fact that 
experiments in which metal rings are compressed to large 
deflections by a pair of opposed concentrated loads 
reveal a load-deflection characteristic which varies with 
the simple theory based upon rigid-perfectly plastic 
behaviour. Thus the influence of strain hardening on the 
deformation of thin rings subjected to opposed 
concentrated loads was investigated using a model in an 
approximate fashion and it is shown how the 
discrepancies between the experiments and the simple 
theory arise.  

O’Dogherty [2] presented the fundamental formulae 
for the moment and strain distributions in circular, 
octagonal and extended octagonal rings. Expressions 
were also given for calculating ring deflections or 
stiffnesses. A design equation for determining ring 
thickness is derived, based on maximum strain criteria 
for the ring material and on data from measurements of 
strain gauge bridge sensitivities of six orthogonal ring 
dynamometers. A procedure was given for the design of 
extended octagonal rings in terms of geometrical 
parameters. Design curves were presented for the 
determination of an appropriate mean ring radius and the 
calculation of ring thickness. Formulae were also 

presented for the calculation of the strain gauge bridge 
sensitivity to the applied orthogonal forces and moment.  

The website of National Institute of Standard and 
Technology [3] gives some note on the design and 
construction of constant cross section proving rings. It is 
noteworthy that all studies as listed in the reference deal 
with rings of constant cross sectional area. 

Therefore, the present study is to develop a 
generalized computer program for a variable 
cross-section proving ring in order to comprehensively 
study the effect of maximum design load, mean radius 
and also width of the cross-section of the thin ring on its 
sensitivity for any isotropic engineering material. 
 
2. ANALYSIS 
 The elastic diametral deflection equation is 
derived from the Castigliano’s theorem, considering a 
circular ring that is loaded causing the diameter to 
change. Since the structure is symmetrical, one quadrant 
needs to be considered. The free body diagram is as 
shown in Fig. 1(a). Here the moment M0 is statically 
indeterminate. As there is no rotation at point A during 
bending of the ring, therefore, dU/dM0=0.  
Where θ defines any section of the beam and  
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The radial deflection at B is computed from the 
Castigliano theorem as 
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For any section, equation for the bending moment can be 
written as  
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So the equation for the moment at any section becomes,  
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For a constant cross section proving ring the net 
deflection is given by  
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For n numbers of variable cross-sections, however, the 
code uses equation (2) in the following form   
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Taking into account the curvature effect, equations for 
total stress at inner and outer fibers are given by: 
 

  
0

0
0

cos .................

.............

2
cos
2

i
i

i

Mc PS
Aer A

Mc PS
Aer A

θ

θ

= +

= − +

 

 
     It should be noted here that while deriving the above 
equations (2)-(6), the terms like the potential energy due 
to normal and shear forces are ignored. It is justified 
because having the variable cross-section most of the 
angular segments are thin enough compared to the mean 
radius of the ring. 
     Since the designed cross-section is rectangular and 
width b is kept fixed, therefore the following variables 
are functions of h only. 
 

Rn = ( )io rr
h

/ln
  

e  = Rn – R  
ci  = R – (h/2)  
co = R + (h/2)  
A = (b. h)  

 
As seen the equations (3)-(6) are highly nonlinear in 
terms of h.  

3. PROGRAM FEATURE 
    The code is able to generate the height of each 
segment following the width, mean diameter and other 
design parameters set by the user. It solves the evolved 
nonlinear equation using Secant method.  

The whole proving ring is divided into 360 segments 
and each segment is further divided into 50 sub-segments. 
The moment along each sub-segment is determined from 
equation (2). Then these moments are sorted in 
ascending order, the maximum value of the moments is 
set as the design moment for the corresponding segment.  
After determining the moment of a segment, the bending 
stress is determined using the curved beam formula, this 
stress is then combined algebraically with the normal 
stress to determine the total stress for the segment using 
the equations (5) and (6).  

All the moments and the stresses are functions of 
height of corresponding segments, that is why an initial 
guess is required to carry out the whole process stated 
above. The determining criterion is achieved as the 
combined stress becomes near about allowable stress 
limit (for instance 200 MPa for the present study) with a 
tolerance limit of 0.00001 mm for the height of the 
segment. Once the height ‘h’ is selected for all segments 
the net deflection is calculated using equation (3). 
 
4. RESULTS AND DISCUSSION 

Though the developed code is capable of handling 
any combination of parameters for a thin ring, to 
demonstrate its usefulness the following limiting values 
were chosen for designing a 5 tf capacity proving ring to 
be made from structural steel: a specific width of 30 mm 
and mean radius of 127 mm, with linear stress-strain 
assumption a yield strength of 400 MPa, and a Young’s 
modulus of 200 GPa. The safety factor has been kept 1. 
The code generates the values of h continuously to 
generate the variable ring profile as shown in Fig. 1(b), 
and the corresponding net deflections of such rings with 
variable cross-sections as shown in Table 1. Using the 
same computer code, it was found that the sensitivity of 
the ring increases with the number of segments. Hence, 
for the same set of data (P=5 tf, R=127 mm, b=30 mm) if 
one quadrant of the ring is divided into 5,10,15,30,45 and 
90 segments, the net deflections are, respectively, 0.49 
mm, 0.56 mm, 0.60 mm, 0.64 mm, 0.67 mm and 0.6864 
mm. From this trend, it is assumed that after 90 segments 
per quadrant, the deflections do not increase significantly. 
Moreover, the stress jumps will also be minimum for 
such a large of segments. Thus, in this study, all 
calculations are presented for 90 segments per quadrant 
of the proving rings of variable cross-sections.  

It is important to note from Fig. 1(b), that unlike the 
cantilever beam of uniform strength that has continuous 
parabolic profile along its span and the minimum 
cross-section at the tip (Timoshenko, [4]), the proving 
ring of uniform strength has the minimum cross-section 
at the point of inflection. Because of large number of 
segments for the present study, a smooth and continuous 
contour of the ring profile can be obtained and there is no 
need for providing fillets at the sharp corners to avoid 
stress concentrations. For such a continuous profile the 
net deflection has also increased significantly (almost 2.5 
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times) in comparison to the conventional rings as seen 
from Table 1. However, slight modification to this profile 
is necessary because of fixing the necessary attachments 
and the dial gage with bolts. Moreover, if needed the ring 
profile may be made continuous by slightly increasing 
the calculated thickness at the inflection points to avoid 
any chance of stress concentrations. The sensitivity of 
the complete ring with these modifications would still 
likely to be high but should be checked by rigorous tests.  
For the ring as shown in Fig. 1(b), the bending moment 
changes its sign approximately at an angle of 500 as seen 
from Fig. 2. Moreover, the maximum value of height (h) 
is at θ = 900 while its minimum value, near the point of 
inflection (θ = 500), is only 1/8 th of the maximum value. 
The highest moment is 1982 N-m at θ = 900 and is only 
22.73 N-m at θ = 510. The inner fiber is critically stressed 
allover the ring except for the angular segment 500 to 630. 
Stresses are, however, almost uniformly distributed 
either in the inner fiber or in the outer fiber, the 
maximum combined stresses being equal to the 
allowable stress of 200 MPa on all the segments 
according to curved beam formula. For a conventional 
ring having the constant cross-sectional area with h = 
47.59mm, the stress would also be maximum at θ = 900, 
but the distribution will not be that uniform, elastic 
flexural stiffness of most of the angular segments will be 
underutilized thus resulting in negligibly small diametral 
deflections as can be seen from Table 1. Although it is 
not demonstrated here for the sake of brevity, the 
designed ring (Fig. 1(b)) with variable cross-sections, 
originally designed for compressive loading, can also be 
safely used for tensile loading to show high sensitivity.  
     More results showing the influence of P, R and b on 
the sensitivity are obtained and presented in Figs. 3 and 
Table 1. As seen from Table 1, the conventional proving 
ring without varying cross-section and with a width of 30 
mm, maximum allowable compressive load of 5 ton 
force, a mean radius of 5 inch (127 mm), the total 
deflection is only 0.27 mm, whereas with this newly 
designed variable cross section proving ring will give a 
total deflection of 0.6864 mm (can be seen also from Fig. 
3). Since the main objective, that is, highly increased 
sensitivity has been achieved for the designed ring it does 
not need expensive vibrating reed mechanism as used by 
the conventional rings. Furthermore, Fig. 3 shows that 
the sensitivity of the proving rings increases with 
increasing width. This is because of the fact that from 
Table 1, the maximum height of cross-section decreases 
with increasing width that in turn ensures that the 
flexural rigidity of each cross-section is fully utilized by 
increasing stresses to their maximum allowable limits. 
For increasing mean radius, sensitivity increases keeping 
all other parameters constant as seen from Table 1. As for 
instance, the net deflection is 0.4788 mm for a design 
load of 5 tf and a mean radius of 4 inch (101.6 mm). If the 
mean radius is increased to 5 inch (127 mm) the net 
deflection increases by 44% and if the mean radius is 
decreased to 3 inch (76.2 mm), the net deflection 
decreases by 38%.  

On the other hand, the effect of change in the 
maximum designed load on the sensitivity can also be 
observed from Fig. 3. The net deflection increases at a 

faster rate for increasing width and decreasing maximum 
design load for the same mean radius. For example, from 
Fig. 3, if the designed load is decreased from 7.5 tf to 
only 2.5 tf, the sensitivity increases by twice for a width 
of 30 mm. The same parameter (that is sensitivity) 
increases by more than twice for a width of 75 mm.  

The optimum design parameters can be selected for a 
given load capacity from Figs. 3. Therefore, it can be 
concluded that for the given maximum design load the 
best design in terms of high sensitivity can be achieved 
for increasing width and mean radius. The width is not a 
big problem but the mean radius should be kept small for 
space constraint during the application of the ring.  

The present design schemes does not include the 
effects of potential energy terms due to normal and shear 
forces assuming all proving rings are thin. Practically, the 
rings’ sensitivity may further increase because of those 
effects. Regarding reliability of the present study 
involving 360 variable segments, interested readers may 
refer to Rahman et al. [5] and Rahman et al. [6] where a 
proving ring of only 24 variable segments was 
constructed to demonstrate that deflection does increase 
in comparison to a conventional ring. 
 
5. CONCLUSIONS 

A computer program for designing proving rings with 
large number of variable cross-sections that is compact 
and ensures maximum elastic deflection with moderate 
elastic stresses has been developed and its usefulness has 
been demonstrated. Because of large number of variable 
cross-sections the profile of the ring has become 
practically continuous; the stress is almost uniformly 
distributed thus fully exploiting the strength of the ring 
material. Consequently, the net deflection has also 
increased significantly in comparison to a conventional 
ring. Comprehensive results obtained from the developed 
code ensure that, given the maximum design load the 
best design in terms of high sensitivity can be achieved 
for increasing width and mean radius. Therefore, 
according to this optimum design scheme the width 
should be large keeping the mean radius within limit for 
space constraint during the application of the ring. 
Proving rings made as per this developed code would be 
practically inexpensive, as it would require less material 
for the ring. 
 
6. TABLES AND FIGURES 
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Fig 1 (a). Free body diagram of a circular ring loaded 
diametrically. 
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Table 1: Comparison of conventional ring with the 
present designed ring 

 

Capa
city 
(tf) 

R 
(mm) 

b 
(mm) 

Deflection 
(mm) 

Maximum 
h (mm) 

Deflection 
of 

convention
al ring 
(mm)* 

5 127 30 -0.686425 47.59 -0.2778 
5 127 40 -0.817394 40.80 -0.3306 
5 127 50 -0.933088 36.25 -0.3771 
5 127 60 -1.03787 32.94 -0.4190 
5 127 70 -1.13435 30.38 -0.4575 
5 127 80 -1.22424 28.34 -0.4934 
5 101.6 30 -0.477866 42.96 -0.1934 
5 101.6 40 -0.571322 36.77 -0.2312 
5 101.6 50 -0.653915 32.64 -0.2645 
5 101.6 60 -0.728743 29.63 -0.2946 
5 101.6 70 -0.797659 27.32 -0.3222 
5 101.6 80 -0.861878 25.47 -0.3478 
5 76.2 30 -0.29795 37.74 -0.1203 
5 76.2 40 -0.3584 32.22 -0.1450 
5 76.2 50 -0.411855 28.55 -0.1667 
5 76.2 60 -0.460307 25.89 -0.1863 
5 76.2 70 -0.504947 23.85 -0.2042 
5 76.2 80 -0.546557 22.22 -0.2209 

[* Calculated taking constant height as in the 5th column 
and using equation (3)] 
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Fig 1(b). Complete designed proving ring with variable 

profile for P = 5tf, R = 127mm, b = 30mm. 
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Fig 2. Stresses and moment along the segments of 
proving ring with variable profile for P=5tf, R=127mm, 
b=30mm. 
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Fig 3. Optimum width selection of the proving ring with 

mean radius 127 mm. 
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8. NOMENCLATURE 
 

Symbol Meaning Unit 

A Cross sectional area of the 
segment 

 

ci 
Distance from neutral axis to 
inner fiber. 

 

b Width of the ring  

E Modulus of elasticity  

R Mean radius   

So 
Stress at outer fiber according to 
curved beam theory 

 

So _ 
total 

Total normal stress at outer fiber.  

δ Deflection  

co Distance from neutral axis to 
outer fiber. 
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e Distance from centroidal axis to 
neutral axis 

 

h Thickness/height of the segment  
I Area Moment of inertia  
P Load capacity   
Si Stress at inner fiber according to 

curved beam theory 
 

Si _ 
total 

Total normal stress at inner fiber  

θ Angle of segment  
 


