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1. INTRODUCTION 
     Among the common civil engineering shell forms, 
which are used as roofing units, the skewed hypars have 
a special position because these architecturally pleasant 
forms may be cast and fabricated conveniently being 
doubly ruled surfaces. The hypar shells may be stiffened 
to have enhanced rigidity when subjected to point loads 
or provided with cutouts for some service requirements. 
A comprehensive idea about their static and free 
vibration characteristics is essential for a designer for 
successfully applying these forms. Nowadays 
researchers are emphasising more on laminated 
composite shells realising the strength and stiffness 
potentials of this advanced material. 
     The initial studies about vibrations of stiffened shell 
panels where about stiffened cylindrical shells reported 
from time to time by Bardell and Mead [1], Mecito g) lu 
and D o&& kmeci [2], Olson [3], Sinha and Mukhopadhyay 
[4], Jiang and Olson [5] who used different methods like 
collocation, finite strip and finite element. Sinha and 
Mukhopadhyay [6] echoed this fact in their review paper. 
As the researchers became more inclined towards 
composite materials a number of interesting papers came 
up dealing with free vibrations of stiffened composite 
shell panels most of which used the finite element as the 
analytical tool. Among these papers, Goswami and 
Mukhopadhyay [7, 8], Prusty and Satsangi [9] worked on 
both cylindrical shell and spherical shells while Rikards 
et al. [10] took up cylindrical stiffened shell panels. 
Recently Nayak and Bandyopadhyay [11, 12] carried out 
free vibration studies of isotropic stiffened shell panels in 

details including stiffened hypar shells. Free and forced 
vibrations of unstiffened composite hypar shell was 
reported by Chakravorty et al. [13]. In a recent paper 
Sahoo and Chakravorty [14] presented results of static 
analysis of composite hypar shells but without stiffeners.  
     An overall look at the volume of literature that has 
accumulated till date dealing with stiffened shell panels 
reflect the fact that stiffened composite skewed hypar 
shells have not received due attention by researchers. 
This, no doubt, defines a wide area of research and the 
present paper aims to focus on the free vibration 
characteristics of stiffened composite hypar shells. 
 
2. MATHEMATICAL FORMULATION 
 
2.1 Finite Element Formulation for Shell 
     A laminated composite hypar shell of uniform 
thickness h and twist radius of curvature Rxy is considered. 
Keeping the total thickness same, the thickness may 
consist of any number of thin laminae each of which may 
be arbitrarily oriented at an angle θ with reference to the 
x-axis of the co-ordinate system. An eight-noded curved 
quadratic isoparametric finite element (Fig.1) is used for 
hypar shell analysis. The five degrees of freedom taken 
into consideration at each node are u, v, w, α, β. Sahoo 
and Chakravorty [14] reported the strain displacement 
and constitutive relationships together with the 
systematic development of stiffness matrix for the shell 
element.  
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Fig 1(a). Eight-noded shell element with isoparametric 
co-ordinates (b) Three noded stiffener elements (i) x- 
stiffener (ii) y- stiffener 
 
2.2 Finite Element Formulation for Stiffener Of 

The Shell 
     Three noded curved isoparametric beam elements 
(Fig.1) are used to model the stiffeners, which are taken 
to run only along the boundaries of the shell elements. In 
the stiffener element, each node has four degrees of 
freedom i.e. usx, wsx, αsx and βsx for x-stiffener and usy, wsy, 
αsy,and βsy for y-stiffener. The generalized 
force-displacement relation of stiffeners can be 
expressed as: 
 
x-stiffener: { } [ ]{ } [ ][ ]{ }sxisxsxsxsxsx BDDF δε == ;  
y-stiffener: { } [ ]{ } [ ][ ]{ }syisysysysysy BDDF δε ==  (1) 

where, { } [ ]Tsxxzsxxsxxsxxsx QTMNF = ;

{ } ( )[ ]Txsxsxxsxxsxxsxsx wu .... += αβαε  
 
and { } [ ]Tsyyzsyysyysyysy QTMNF = ;

{ } ( )[ ]Tysysyysyysyysysy wv .... += βαβε  
 
Elasticity matrices are as follows: 
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where, ijijijij AeeBDD 2/ 2 ++= ; ijijij eABB +=/ , 
     (2) 
     Here the shear correction factor is taken as 5/6. The 
sectional parameters are calculated with respect to the 
mid-surface of the shell by which the effect of 
eccentricity of the x-stiffener, esx and y-stiffener, esy are 

automatically included. The element stiffness matrix: 
 
 for x-stiffener: [ ] [ ] [ ][ ]∫= dxBDBK sxsx

T
sxxe ;  

for y-stiffener: [ ] [ ] [ ][ ]∫= dyBDBK sysy
T

syye  (3) 

     The integrals are converted to isoparametric 
coordinates and are carried out by 2 point Gaussian 
quadrature. Finally, the element stiffness matrix of the 
stiffened shell is obtained by appropriate matching of the 
nodes of the stiffener and shell elements through the 
connectivity matrix and is given as: 
 
[ ] [ ] [ ] [ ]yexeshee KKKK ++= .   (4) 
 
The element stiffness matrices are assembled to get the 
global matrices. 
 
2.3 Element Mass Matrix 
     The element mass matrix for shell is obtained from 
the integral 

[ ] [ ] [ ][ ]dxdyNPNM
T

e ∫∫= ,   (5) 
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Element mass matrix for stiffener element 

[ ] [ ] [ ][ ]dxNPNM
T

sx ∫∫=   for x stiffener  and 

[ ] [ ] [ ][ ]dyNPNM
T

sy ∫∫=   for y stiffener  (7) 

 
Here,  [ ]N  is a 3x3 diagonal matrix. 
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     Finally, the element mass matrix of the stiffened shell 
is obtained by appropriate matching of the nodes of the 
stiffener and shell elements through the connectivity 
matrix and is given as: 
 
[ ] [ ] [ ] [ ]yexeshee MMMM ++= .  (8) 
 
The element mass matrices are assembled to get the 
global matrices. 
 
2.4 Solution Procedure for Free Vibration 

Analysis 
     The free vibration analysis involves determination of 
natural frequencies from the condition 

[ ] [ ] 02 =− MK ω     (9) 

     This is a generalized eigenvalue problem and is 
solved by the subspace iteration algorithm. 

2.5 Numerical Examples 
     A simply supported square plate with one stiffener in 
one plan direction is analysed applying the present 
formulation making the rise of the hypar shell zero. The 
comparison of fundamental frequency obtained by 
Mukherjee and Mukhopadhyay [1988], Nayak and 
Bandyopadhyay [12] and present method is presented in 
Table 1. Further a comparison of the nondimensional 
fundamental frequencies of cantilever twisted plates 
obtained by Qatu and Leissa[(1991] and those by present 
method is presented in Table 2.  
     Additional problems of stiffened skewed hypar shells 
(Fig. 2) are solved for eight different types of stacking 
sequences of shell surfaces, two different types of 
boundary conditions, different types of stiffening 
schemes and different stiffener to shell thickness ratio 
with graphite-epoxy as the material. The individual 
lamina properties are assumed to be as E11=25E22, G12 
=G13 =0.5E22, G23 =0.2E22, ν12 = ν21 =0.25. However, in 
all the cases the fibers in the stiffeners are considered to 
be arranged in a single layer along the length. The 
fundamental frequencies of different combinations for 
lamination, boundary conditions, stiffening schemes and 
different stiffener to shell thickness ratios are presented 
in Tables 3-4. 

Fig 2. A typical skewed hypar shell panel with biaxial 
stiffeners eccentric at shell bottom 

3. RESULTS AND DISCUSSION 
     The results of Table 1 show that the agreement of 
present results with the earlier ones is excellent and the 
correctness of the free vibration formulation of stiffened 
hypar shell is established. The fundamental frequencies 
of cantilever twisted plates obtained by Qatu and Leissa 
[1991] compare well with the present results as shown in 
Table 2 and the correct incorporation of twist of 
curvature in the formulation is established.  
     The converged values of the nondimensional 
fundamental frequencies of the authors’ own problems 
are presented in Tables 3-4. Fundamental frequency is 
taken to have converged for particular finite element grid, 
if further refinement of the grid does not improve that 
result by more than one percent. With this criterion a 
12x12 mesh is found to be appropriate for all the 
problems taken up here. 
 
3.1 Free Vibration Response of Bare and 

Stiffened Hypars Combining Different 
Laminations and Boundary Conditions 

     Nondimensional fundamental frequencies for 
composite hypar shells with bare and stiffened surfaces 
are furnished in Tables 3 for simply supported and 
clamped boundary conditions respectively. The 
laminations include two, three and four layered 
antisymmetric and symmetric, cross and angle plies. For 
this preliminary study only central stiffeners are 
considered running along either one or both of the plan 
directions. For all the laminations frequencies of 
X-stiffened and Y-stiffened shells are comparable for 
clamped boundary conditions. The same trend is true for 
simply supported boundary also saving the cases of three 
and four layered symmetric cross ply laminates where 
X-stiffeners are found to impart considerably greater 
dynamic rigidity compared to the Y-stiffeners. In all the 
cases, however, a biaxially stiffened shell has greater 
frequency than a shell with a single stiffener. It is further 
noted that for cross ply clamped shells the increase of 
frequency of a bare shell on stiffening is insignificant. An 
overall study of Tables 3 reveals that the angle ply 
laminates are better than the cross ply ones for both the 
boundary conditions. Four layered symmetric and 
antisymmetric laminates appear to be the best choices of 
stacking orders for SSSS and CCCC stiffened surfaces 
respectively. 
 
3.2 Relative Performances of Stiffened Hypars 

Combining Different Stiffener Depths, 
Laminations and Boundary Conditions 

     In practical situations where an engineer has the 
flexibility of using one or more stiffeners in either 
directions, he may be interested in knowing the stiffener 
arrangement that will yield the highest frequency for a 
given amount of material consumption. Table 4 furnishes 
fundamental frequencies of shell with the number of 
stiffeners in either direction as 1, 3 and 5 with the 
corresponding dst/h ratio as 5, 1.6 and 1. Hence each of 
these options utilizes the same quantity of material. The 
close perusal of the result brings out the fact that using a 
single set of biaxial deep stiffeners (nx=ny=1 and dst/h=5) 
is a better choice compared to the use of a number of 
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shallow stiffeners in 13 out of 16 combinations of 
laminations and boundary conditions considered here. 
The exception to this general tendency are noted for 
antisymmetric angle ply laminates and for simply 
supported antisymmetric cross ply laminate. Hence one 
can confidently infer that for three or four layered angle 
and cross ply shells using a set of deep biaxial central 
stiffeners may be recommended. If one uses two layered 
laminates he has to try out the stiffest configuration by 
varying number and depth of stiffeners. 

 

4. CONCLUSIONS 
     The present study leads to the following conclusions. 
1. The composite stiffened shell element used here is 

suitable for analysing free vibration problems of 
composite stiffened hypar shells. 

2. For clamped hypar shells the performance of X and Y 
stiffeners are comparable. 

3. For simply supported boundary condition, however, 
some exceptions to this general trend are noted for 
three and four layered symmetric cross ply laminates 

4. Bare cross ply clamped shells hardly undergo any 
improvement of frequency on stiffening. 

5. For both the boundary conditions angle ply 
laminates are better choices than the cross ply one in 
terms of fundamental frequencies. For simply 
supported boundary condition the four layered 
symmetric angle ply is the best laminate while for 
clamped shells the four layered antisymmetric 
lamination exhibit the best performance. 

6. If a designer has the flexibility of varying the 
number and depth of stiffener keeping the material 
consumption as constant, he should opt for a single 
set of biaxial deep stiffeners for three and four 
layered laminates. This recommendation holds good 
for both simply supported and clamped shells. 

  

Table 1: Natural frequencies (Hz) of centrally stiffened clamped square plate 
 

Nayak and Bandyopadhyay(2002b) Mode no. Mukherjee and 
Mukhopadhyay 

(1988) 
N8 (FEM) N9 (FEM) 

Present method 

1 711.8 725.2 725.1 733 
a=b=0.2032 m, h=0.0013716 m, dst= 0.0127 m, wst =0.00635 m, stiffener eccentric at bottom, 

Material property: E=6.87x1010 N/m2, ν=0.29, ρ=2823 kg/m3 

 
Table 2: Nondimensional natural frequencies (ω ) for three layer graphite epoxy twisted plates, [θ /-θ /θ ] laminate 

 
Angle of 

twist 
θ (degree) 0 15 30 45 60 75 90 

Qatu and Leissa(1991) 1.0035 0.9296 0.7465 0.5286 0.3545 0.2723 0.2555 φ=150 
Present FEM 0.9989 0.9258 0.7443 0.5278 0.3541 0.2720 0.2551 

Qatu and Leissa(1991) 0.9566 0.8914 0.7205 0.5149 0.3443 0.2606 0.2436 φ=300 
Present FEM 0.9491 0.8840 0.7181 0.5141 0.3447 0.2614 0.2445 

a/b=1, a/h=100; E11=138 GPa, E22=8.96 GPa, G12=7.1 GPa, ν12=0.3 

 

Table 3: Non dimensional fundamental frequency of simply supported (SSSS) and clamped (CCCC) shell 
 

 
SSSS CCCC 

Laminations 

(Degree) 

nx=0, 

ny=0 

nx=1, 

ny=0 

nx=0, 

ny=1 

nx=1, ny=1 nx=0, 

ny=0 

nx=1, 

ny=0 

nx=0, ny=1 nx=1, ny=1 

0/90 6.04644 6.10935 6.0659 7.60834 17.2268 17.5550 17.5466 17.8214 

0/90/0 6.47008 8.73346 6.47307 8.74104 17.6786 17.9648 17.8316 18.2082 

0/90/0/90 7.72463 7.77772 7.72968 9.27972 17.6069 17.9067 17.9067 18.1616 

0/90/90/0 6.92198 8.96514 6.92501 9.02681 17.7269 18.0191 17.9912 18.2584 

+45/-45 5.97132 5.99681 5.97797 7.62406 18.2576 19.5535 19.4445 25.5791 

+45/-45/+45 8.53660 8.76874 8.80660 10.1723 21.6202 23.4061 23.3884 28.4175 

+45/-45/+45/-45 8.54295 8.54607 8.55353 10.1763 21.6021 24.1832 24.1341 29.7274 

+45/-45/-45/+45 8.9652 9.0858 9.1229 10.5489 21.8578 23.9762 23.9714 28.7803 

a/b=1, a/h=100, c/a=0.2, wst/h=1, dst/h=2; E11 =25E22 ,G12 =G13 =0.5E22, G23 =0.2E22, ν12 = ν21 =0.25 
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Table 4: Non dimensional fundamental frequency of simply supported (SSSS) and clamped (CCCC) shell 
for different dst/h ratio. 

 
 

SSSS CCCC 
Laminations 

(Degree) 
nx=1, ny=1 

 dst/h=5 

nx=3, ny=3 

dst/h=1.6 

nx=5, ny=5 

dst/h=1 

nx=1, ny=1 

dst/h=5 

nx=3, ny=3 

dst/h=1.6 

nx=5, ny=5 

dst/h=1 

0/90 8.9584 9.1596 9.0745 19.3797 17.8918 17.1713 
0/90/0 10.7543 10.2971 9.5433 20.4062 18.2367 17.5332 
0/90/0/90 11.0579 10.7069 10.2860 20.3920 18.1855 17.4740 
0/90/90/0 10.9887 10.5424 9.8177 20.4779 18.2747 17.5711 
+45/-45 9.1265 9.3041 9.3214 28.1148 29.2387 29.0199 
+45/-45/+45 12.2741 11.6139 11.1985 30.9555 30.5244 30.7596 
+45/-45/+45/-45 12.3645 11.6643 11.1815 32.5007 31.2921 31.5851 
+45/-45/-45/+45 12.7093 11.0225 11.4663 32.2231 31.3933 31.7606 

a/b=1, a/h=100, c/a=0.2, wst/h=1; E11 =25E22 ,G12 =G13 =0.5E22, G23 =0.2E22, ν12 = ν21 =0.25 
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7. NOMENCLATURE 
 

Symbol Meaning 
a,b, c 
bsx, bsy 
dsx, dsy 

length, width and rise of shell 
width of x and y stiffener  
depth of x and y stiffener 

dst 
D 
E11,E22 

depth of stiffener 
elasticity matrix 
elastic moduli 

G12,G13, G23 
np  
nx,ny 
wst 
zk 
 
ν12, ν21 

ρ  
ω 

shear moduli of a lamina 
number of plies in a laminate 
no of stiffeners in x and y directions 
width of stiffener 
distance of bottom of kth ply from 
mid-surface of a laminate 
Poisson’s ratios 
density of material 
natural frequency 

 


