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1. INTRODUCTION 
     Elasticity problems are usually formulated either in 
terms of deformation parameters or stress parameters. 
Among the existing mathematical models of plane 
boundary-value stress problems, the stress function 
approach [1] and the displacement formulation [2] are 
noticeable. Successful application of the stress function 
formulation in conjunction with finite-difference 
technique has been reported for the solution of plane 
elastic problems where all the conditions on the 
boundary are prescribed in terms of stresses only [3, 4]. 
Further, Conway and Ithaca [5] extended the stress 
function formulation in the form of Fourier integrals to 
the case where the material is orthotropic, and obtained 
analytical solutions for a number of ideal problems. The 
shortcoming of the stress function approach is that it 
accepts boundary conditions only in terms of loadings. 
Boundary restraints specified in terms of the 
displacement components cannot be satisfactorily 
imposed on the stress function. As most of the practical 
problems of elasticity are of mixed boundary conditions, 
the stress function approach fails to provide any explicit 
understanding of the state of stresses at the critical 
regions of supports and loadings. The displacement 
formulation, on the other hand, involves finding two 
displacement functions simultaneously from the two 
second-order elliptical partial differential equations of 
equilibrium, which is extremely difficult, and this 
problem becomes more serious when the boundary 
conditions are mixed [2]. The difficulties involved in 
trying to solve practical stress problems using the 
existing models are clearly pointed out by Durelli and  
Ranganayakuma [6]. 

     As stated above, neither of the formulations is suitable 
for solving problems of mixed boundary conditions, and 
hence a new mathematical model is used to solve the 
present problem of composite structure. In this approach, 
the plane elastic problem is formulated in terms of a 
single potential function of space variables. It should be 
mentioned that the present modeling approach enables us 
to manage the mixed mode of the boundary conditions as 
well as their zones of transition very efficiently. The 
present paper demonstrates the application of the 
displacement potential approach to the analytical 
solution of a deep stiffened cantilever beam of 
orthotropic composite material subjected to a parabolic 
shear loading. The supporting edge of the beam is 
assumed to be rigidly fixed and the two opposing edges 
are stiffened. The solutions are obtained in the form of an 
infinite series and the corresponding distributions of 
different stress and displacement components are 
presented mainly in the form of graphs. 
 
2. ANALYTICAL MODEL OF THE PROBLEM 
     With reference to the Cartesian coordinate system x–y, 
a deep stiffened cantilever beam of composite materials 
is shown in Fig. 1. The fibers are directed along the 
length of the beam. The left edge is rigidly fixed to a 
support and the opposing edges are stiffened. The height 
and the length of the beam are designated by a and b, 
respectively. The tip of the beam is subjected to a 
parabolic shear load xyσ , which is a function of y only. 
     For this model of the problem, different stress and 
displacement components are calculated at different 
critical sections of the beam using the method of single 
displacement potential function. 
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Fig 1. Analytical model of the problem 

 
3. DISPLACEMENT POTENTIAL FORMULATION 

FOR THE PROBLEM 
     With reference to a rectangular Cartesian coordinate 
system and in the absence of body forces, the equilibrium 
equations are given by [1] 
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     To express the equilibrium equations in terms of 
displacement components, we need to express the three 
stress components in terms of displacement parameters. 
The corresponding three stress-displacement relations 
for general orthotropic materials are obtained from the 
Hooke’s law as follows [7] 
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     Substituting the above stress-displacement relations 
into Eqs. (1a) and (1b) and using the reciprocal relation 

211122 µEµE = , we obtain the two equilibrium 
equations for two-dimensional problems of orthotropic 
materials in terms of the two displacement components 
as  
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 In the present study, a new potential function ψ (x,y) is  
defined in terms of the two displacement components as 
follows: 
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     With the above definition of ψ (x, y), the first 
equilibrium equation (3a) is automatically satisfied. 
Therefore, ψ has to satisfy the second equilibrium 
equation (3b) only. Expressing Eq. (3b) in terms of the 
potential function ψ, the condition that ψ has to satisfy is 
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4. SOLUTION OF THE PROBLEM 
    For the model shown in Fig.1, the stiffened cantilever 
is considered to be of unit thickness and the potential 
function ψ is assumed to be 
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where Xm is a function of x only and α = mπ/a. Thus, Xm 
has to satisfy the ordinary differential equation 
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where the ( / ) indicates differentiation with respect to x. 
The general solution of this differential equation can be 
given by: 
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Here Am, Bm, Cm,  and Dm are constants. Now combining 
Eqs.(2), (4), (6), and (8), the expressions of stress and 
displacement components are obtained as follows: 
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For the present problem, it is seen that the boundary 
conditions on stiffened edges  
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are satisfied automatically.                            
The boundary conditions at the fixed edge, x=0, are 
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Now, the parabolic shear loading on the right lateral 
boundary of the beam, x=b, can be expressed 
mathematically as follows: 
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The normal stress at this boundary is 
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where P is the maximum shear stress at y=a / 2. From 
Fourier integral formula, it can be written that 
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By applying the associated boundary conditions in  
relevant equations,  we get the following four equations 
in terms of the four unknowns Am, Bm, Cm, and Dm.  
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The above four simultaneous algebraic equations 
18(a)-18(d) can further be realized in a simplified form 
for the solution of the unknowns as follows: 
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5. RESULTS AND DISCUSSION   
     In this section, numerical results are presented for a 
boron / epoxy unidirectional composite cantilever beam. 

The effective mechanical properties of the boron/epoxy 
composite are E1=28.29x104 MPa, E2=2.415x104 MPa, 
µ12=0.27 and G12= 1.035x104 MPa. Furthermore, the 
aspect ratio of the cantilever beam used in obtaining the 
results is taken as b /a=3.0. 
 

 
 
     The variation of the normalized axial displacement 
component with y is shown in Fig. 2(a). At the section 0 ≤ 
y/a ≤0.5, the axial displacement is positive and at the 
section 0.5 ≤ y/a ≤1.0, this displacement is negative. The 
axial displacement increases with the increase of the 
value of x/b.  
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Fig 2(b).  Distribution of normalized lateral displacement
 component (uy /a) at different sections of the beam  
 
     Figure 2(b) illustrates the variation of normalized 
lateral displacement component with y at different 
sections of the cantilever. For higher value of x/b i.e. near 
the right lateral edge, the lateral displacement varies 
parabolically with y showing peak at y/a =0.5. As the 
ratio x/b decreases i.e. as the fixed support is approached, 
the parabolic shape gradually becomes flat with zero 
magnitude at x/b = 0. 
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     Figure 3(a) illustrates the distribution of normalized 
axial stress component with the variation of y at different 
sections of the beam. It is observed that the stress 
distribution is antisymmetric with respect to y. The 
antisymmetric variation is significant in region between 
the two lateral edges x/b > 0 and x/b < 1.0. At the two 
edges, the variation of the stress with y is not so 
significant. At x/b=1.0, the stress is almost zero, which 
satisfies the physical boundary conditions. 
 

 
 
     Figure 3(b) is the distribution of normalized lateral 
stress vs. y at different sections of the beam. This stress 
distribution is also antisymmetric with respect to y. 
However, in this case, the antisymmetric variation of the 
stress is significant at and near the right lateral edge. As 
the ratio of x/b decreases, the variation of antisymmetric 
stress distribution becomes more and more insignificant. 
Further, it is noted that at the two stiffened edges (y/a=0 
and y/a=1.0), the lateral stress is zero, which satisfies the 
physical boundary conditions. 
 
 

 
 
     The distribution of normalized shearing stress as a 
function of x and y is shown in Fig.3(c). At x /b=1.0, i.e.at 
the right lateral edge, the shearing stress approaches the 
value of the applied load and thus satisfies the boundary 
conditions. The distribution of shearing stress is 
symmetric with respect to y. It is noted that the shearing 
stress is not zero at the stiffened edges for x /b < 1.0. 
 
6. CONCLUSIONS 
     A new displacement potential approach has been used 
to analyze the states of stresses and displacements in a 
deep stiffened cantilever beam of composite material 
with mixed boundary conditions. No appropriate 
analytical approach was available in the literature which 
could satisfactorily provide the explicit information 
about the actual stresses at the critical regions of supports 
and loadings. Both the qualitative and quantitative results 
of the present stiffened cantilever beam problem of 
orthotropic composite materials establish the soundness 
as well as appropriateness of the present single function 
approach. The distinguishing feature of the present 
ψ-formulation over the existing approaches is that, here, 
all modes of boundary conditions can be satisfied exactly, 
whether they are specified in terms of loading or physical 
restraints or any combination of them; and thus the 
solutions obtained are promising and satisfactory for the 
entire regions of interest. From the analysis, it is clear 
that right vertical section is critical for normal stress in 
the y-direction because, at this section, the maximum 
value of this stress is nearly equal to the maximum value 
of the applied shearing stress. 
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8. NOMENCLATURE 
 

Symbol Meaning Unit 

ψ (x,y) Displacement potential 
functio 

 

E1 Elastic modulus in 
longitudinal  direction 

MPa 

 E2 Elastic modulus in 
transverse direction 

MPa 

G12 Shear modulus   MPa 

µ12 Major Poison’s ratio  

µ21 Minor Poison’s ratio  

σxx Axial stress kPa 

σyy  Lateral stress  kPa 

σxy Shear stress kPa 

P Maximum value of shear 
stress 

kPa 

I0, Im Constants  
Am, Bm, Cm, 
Dm, B 

Constants  

ux  Axial displacement m 

uy Lateral        displacement m 

a Width of the cantilever 
beam 

m 

b Length of the cantilever 
beam 

m 

 


