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1. INTRODUCTION 
     The outliers describe the abnormal data behavior, i.e. 
data that are deviating from the natural data variability. 
Multivariate outliers can be identified as points with 
large Mahalanobis distances based on robust estimates of 
population scatter and location.  
     The issue of robust estimation and/or outlier detection 
has been researched by many authors (Campbell, 1980, 
1982; Davies, 1987; Develin et al., 1981; Hadi 1992, 
1994; Hampel et al., 1986; Huber, 1981; Lopuhaä, 1989; 
Maronna, 1976; Rocke and Woodruff, 1993; Rousseeuw 
and Leroy, 1987; Rousseeuw and van Zomeren, 1990; 
Tyler, 1983, 1991).Rousseeuw (1985) introduces 
minimum volume estimator (MVE) and minimum 
covariance determinant (MCD) and use them for outlier 
detection. Other authours have used the concept of MVE 
or MCD in their outlier detection methods. Atkinson 
(1994), in his outlier detection method, considered 
forward search from random elemental sets and choose a 
partition of the data that had the smallest “half” sample 
ellipsoid volume. Rocke and Woodruff (1996) obtained a 
hybrid algorithm utilizing steepest descent procedure of 
Hawkins (1993) for obtaining the MCD which was used 
as a starting point for forward search algorithm of 
Atkinson (1993) and Hadi (1992). Rocke and Woodruff 

performed extensive simulations and observed that it is 
very difficult to detect outliers in data with a 
contamination fraction of 35%, and almost impossible in 
data with a contamination fraction of 40% or 45%. 
     In this paper we explain detection of outlier technique 
named as support vector data description (SVDD, Tax 
and Duin, 1999), which is based on support vector 
method developed by Vapnik. A spherically shaped 
decision boundary around a set of objects is constructed 
by a set of support vectors describing the sphere 
boundary. It has the possibility of transforming the data 
to new feature spaces without much extra computational 
cost. By using the transformed data, this SVDD can 
obtain more flexible and more accurate data descriptions. 
The error of the first kind, the fraction of the training 
objects, which will be rejected, can be estimated 
immediately from the description without the use of an 
independent test set, which makes this method data 
efficient. The support vector data description is 
compared with other outlier detection methods on real 
data. In this paper a dataset of an electrolysis process of 
copper production was taken into consideration. A large 
dataset of eight variables of different metal impurities 
(ppm) in the process and three hundred seventy 
observations are taken into account to define the data 
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domain and outliers. It is tried here to find the best 
representation of a dataset such that the target class may 
best be distinguish from the outlier class. 
 
2. SUPPORT VECTOR MACHINE (SVM) 

SVMs are a new learning method introduced by 
V.Vapnik et al. They are well-founded in terms of 
computational learning theory and very open to 
theoretical understanding and analysis. The foundations 
of Support Vector Machines (SVM) have been developed 
by Vapnik [2] and are gaining popularity due to many 
attractive features, and promising empirical performance 
[3]. They are used in many real world pattern recognition 
problems. Initially they are proposed for binary 
classification.  
     The classification problem can be restricted to 
consideration of the two-class problem without loss of 
generality. Consider the problem of separating the set of 
training vectors belonging to two separate classes. 
Let , 1,2,..., , n

i ix i l x= = ℜ with corresponding class levels 
{ }1,1iy ∈ − be the training vectors. iy  are also called the 

desired values in classical supervised learning. The class 
levels are discrete (e.g. Boolean) values for 
1classification problem. Here l  is the number of training 
observations and n  is the dimension of each 
observation. 
 

 

 
3. SUPPORT VECTOR DATA DESCRIPTION 

(SVDD) 
     Support vector machine is primarily for binary 
classification. But support vector data description 

 
 
(SVDD) is used for ‘one-class classification’ [5, 6]. For 
data domain description not the optimal separating 
hyperplane has to be found, but the sphere with minimal 
volume (or minimal radius) containing all objects. A 
sphere with minimum volume, containing all (or most of) 
the data objects is to be found out. This is very sensitive 
to the most outlying object in the target data set. When 
one or a few very remote objects are in the training set, a 
very large sphere is obtained which will not represent the 
data very well. Therefore, we allow for some data points 
outside the sphere and introduce slack variables iξ . The 
sphere is described by center a and radius R; the radius 
can be minimized by  
 

2( , , )i i
i

F R a R Cξ ξ= + ∑    (1) 

 
where the variable C gives the trade-of between 
simplicity (or volume of the sphere) and the number of 
errors (number of target objects rejected). iξ is a slack 
variable. This has to be minimized under the constraints 
 
( ) ( ) 2

, 0T
i i I i ix a x a R ξ ξ− − ≤ + ∀ ≥   (2) 

 
where a  is center of the sphere. Incorporating these 

constraints in 
1

0
m

i i
i

yα
=

=∑ , we construct the Lagrangian,  

 
2( , , , )i i i

i
L R a R Cα ξ ξ= + ∑

( ){ }2 2 22i i i i i i
i i

R x ax aα ξ γ ξ− + − − + −∑ ∑   (3) 

 
with Lagrange multipliers 0iα ≥  and 0iγ ≥ . Setting the 
partial derivatives to 0, new constraints are obtained: 
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0i i iC α γ− − = ∀     (4) 
 
Since α ≥ 0i and iγ ≥ 0 we can remove the variables 

iγ from the third equation in (4) and use the 
constraints 0 i iCα≤ ≤ ∀ . 

 
Fig 3. Data Description of a small data set, (left) 
normal spherical description, (right) description 
using a Gaussian kernel. 

 
 

Fig 1. A separating hyperplane ( , )w b for a two 
dimensional training set. 

 
 
Fig 2. A binary classification problem with maximal 

margin by SVM. 
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Rewriting Eq. (3) and resubstituting Eq. (4) give to 
maximize with respect to α i : 
 

( ) ( )
1

1

l

i i i i j i j
i ij

L x x x xα αα
=

= −∑ ∑    (5) 

with constraints 0 i Cα≤ ≤ , 
1

1
l

i
i

α
=

=∑  

     The second equation in (4) states that the center of the 
sphere is a linear combination of data objects, with 
weight factors iα , which are obtained by optimizing Eq. 
(5). Only for a small set of objects the equality in Eq. (2) 
is satisfied: these are the objects, which are on the 
boundary of the sphere itself. For those objects the 
coefficients α i  will be non-zero and are called the 
support objects. Only these objects are needed in the 
description of the sphere. The radius R  of the sphere can 
be obtained by calculating the distance from the center of 
the sphere to a support vector with a weight smaller 
than C . Objects for which α i . C  have hit the upper 
bound in Eq. (4) and are outside the sphere. These 
support vectors are considered to be outliers. 
     To determine whether a test point z  is within the 
sphere, the distance to the center of the sphere has to be 
calculated. A test object z  is accepted when this distance 
is smaller than the radius, i.e., when ( ) ( )Tz a z a R− − − ≤ 2 . 
Expressing the center of the sphere in terms of the 
support vectors, we accept objects when 
 

( ) ( ) ( )
l l

i i i j i j
i i

z z z x x x Rα αα
= =

− + ≤∑ ∑ 2

1 1
. 2 . .             (6) 

 
     The method just presented only computes a sphere 
around the data in the input space. Normally, data are not 
spherically distributed, even when the most outlying 
objects are ignored. So, in general, we cannot expect to 
obtain a very tight description. Since the problem is 
stated completely in terms of inner products between 
vectors (Eqs. (5) and (6)), the method can be made more 
flexible, analogous to (Vapnik, 1995). Inner products of 
objects i jx x⋅( )  can be replaced by a kernel function 

i jK x x( , )  when this kernel i jK x x( , )  satisfies Mercer's 
theorem. This implicitly maps the objects ix  into some 
feature space and when a suitable feature space is chosen, 
a better, more tight description can be obtained. No 
explicit mapping is required; the problem is expressed 
completely in terms of i jK x x( , ) .This in general does not 
give a tight description of the dataset, hence a kernel is 
used and most generally a Gaussian kernel is used to get 
a tight or a superior description as in comparison to 
polynomial kernel. 
     Therefore, we replace all inner products i jx x⋅( ) by a 
proper i jK x x( , ) and the problem of finding a data domain 
description is now given by (see (5)) 
 

( ) ( )
1

1

l

i i i i j i j
i ij

L K x x K x xα α α
=

= −∑ ∑   (7) 

 

Using a Gaussian kernel  
2 2( ) exp( ( ) )G i j i jK x x x x s− = − −    (8) 

 
the above equation will be 
 

2

1
1 ( , )

j

i i j G i j
i i j

L K x xα αα
= ≠

= − −∑ ∑  

 
and Eqn.(6), becomes 
 

22 ( , ) 1i G j X
i

K z x R Cα− ≤ − −∑    (9) 

 
where XC  (trade-off parameter) depends on support 
vectors and iα . 
     The Gaussian kernel contains one parameter s called 
as width parameter in Eq. (8). It is noticed that with 
smaller value of s the boundary description will be 
tighter and with larger it will be more like a sphere. 
 

 
 
Fig 4. With width parameter s = 1.0 (smaller value) the 
boundary is very tight and the support vectors are more in 
comparison to of s = 25.0 (larger value). 
 
In general a good representation of the target class and 
the outlier class can be identified. 
 
4. QUALITY CONTROL ANALYSIS 
     When quality of a final product in an industry depends 
on more than two variables and when the depending 
variables are large in numbers and they do not follow a 
particular distribution the study of quality characteristic 
is be very difficult in simple statistical methods. In 
multivariate normal distribution the dataset give an 
elliptical shape and in multidimensional they give an 
ellipsoid look. 
 

 
 

Fig 5. Dataset in a bivariate, (left) and a multivariate, 
(right) normal distribution. 

 
     To get the shape of a distribution of dataset with 
nonparametric distribution is difficult. The target class 
and the outlier in the distribution in multidimensional 
case can be well judged by using support vector data 
description. Even the percentage of data outside the 
boundary can be calculated by SVDD. 
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5. CASE STUDY 
     A study of raw data [15] of an electrolysis process is 
taken for the analysis.  The samples are taken during one 
year of copper production, and two samples are taken 
each day. Each cathode was left in the electrolyte for 10 
days and during this period the amount of copper was 
allowed to grow continually. For each sample the levels 
of eight metal impurities Ag, Ni,Pb, Bi, Sb, As, Te, and 
Se are recorded. The impurities should not more than 5%. 
Here the data are of 370 observations and with 8 
variables ( 370 8× ). 
 
6. FEATURES EXTRACTION 
     The SVDD is applied to the dataset and outliers are 
detected. In figure (6) distance of different points from 
kernel center is shown. Outliers are clearly visible in the 
figure (9). Number of support vectors for different value 
of beta (Lagrangian multiplier) is also shown in the 
figure (6). 
     In this analysis the trade off parameter as in the figure 
(7) below, the number of data points inside and outside 
the support vector boundary with their radius shows the 
percentage of data to be considered as outliers. 
 

 
Fig 6. Number of vectors for different values of beta, 
(upper) and distance of data from kernel centre 
(R-values). 
 
     The SVDD analysis can well be presented and 
understood in a two dimensional case. In figure (8) all 8 
variables are considered and the support vectors are 
shown with ⊗ and data within the support vectors are 
with O sign. The outliers are shown with + sign. Here it 
is difficult to understand the support vectors as all 8 
variables are represented in a two dimensional figure. 
     In figure (10) first and second variables and in figure 
(11) second and third variables are represented. Here the 
support vector boundary can well be drawn classifying 
the target and outliers class. 
     In our analysis the trade-off parameter XC  is taken as 
0.25 to get a tight descript boundary. For a good data 
description, two requirements have to be fulfilled: (1) a 
low target rejection rate and (2) a low outlier acceptance 
rate. When we are given only examples of the target set, 

the first term can be estimated by the number of support 
vectors that we obtain in the minimization of Lagrangian 
(17).  
  

 
Fig 7. Data inside and outside the support vector 

boundary with their radius (kernel distance). 
 

 
 

Fig 8. All eight variables are considered and support 
vectors classify the target and outliers class. 
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Fig 9. All variables with 370 samples are projected with 
their kernel distances. The visible peaks are the outliers. 
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7. CONCLUSIONS 
     Best representation of the electrolysis process data is 
made by support vector data analysis and the target class 
and outliers are found out. Statistics does not help for 
higher degree of data with nonparametric distribution. 
Hence in industrial process where the process variables 
are many and do not follow a particular distribution 
SVDD can play as a good decision maker to identify the 
outliers so that the process can be modified to get good 
quality of product. 
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Fig 10. First and second variables are considered and 
support vectors classify the target and outliers class. 
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Fig 11. Second and third variables are considered and 
support vectors classify the target and outliers class. 

 
     In this paper the work of identification of target class 
and outliers is explained but the work can be extended to 
find out the percentage of data rejection with respect to 
the trade-off parameter. This Gaussian kernel contains 
one extra free parameter, the width parameter s  in the 
kernel (from definition (8)). For small values of s  the 
SVDD resembles Parzen density estimation, while for 
large s  the original hypersphere solution is obtained [6]. 
As shown in [6] this parameter can be set by setting a 
priori the maximal allowed rejection rate of the target set, 
i.e. the error on the target set. Secondly, we also have the 
trade-off parameter C. We can define a new variable: 
 

1υ =
NC

                   (10) 

 
     Scholkopf [17] showed that this is an upper bound for 
the fraction of objects outside the description. The exact 
influence of s  and (or C) on the SVDD is to be 
investigated. 
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