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1. INTRODUCTION 
     Stress intensity, K, as the name implies is a parameter 
that amplifies the magnitude of the applied stress and 
depends on the geometry and also on loading condition. 
These load types are categorized as Mode-I, Mode-II and 
Mode-III loading. Generally there are three modes to 
describe different crack surface displacement as in Fig. 1. 
Mode-I is opening or tensile mode where the crack 
surfaces move directly apart. Mode-II is sliding or in 
plane shear mode where the crack surfaces slide over one 
another in a direction perpendicular to the loading edge 
of the crack. Mode III is tearing and anti plane shear 
mode where the crack surfaces move relative to one 
another and parallel to the loading edge of the crack. 
   Analysis of stress intensity factor at geometric notches 
or holes has not been investigated to a great extent 
because of complexity of calculation and wide variety of 
parameters involved. The stress intensity factor for 
cracks at the edge of a notch can be expressed as [1] 
 

lFK πσ=     (1) 
 
where l  is the crack length, σ  is the applied stress at 
the loading edge and F is called geometry factor. In 

absence of an analytical solution of F, its determination  
requires extensive numerical computation for each 
particular notch profile, crack length and loading 
condition. Such a computational approach is not very 
efficient for problems in which large numbers of crack 
configurations and or loading conditions are to be 
considered. This has been demonstrated in Westgaard 
approach [2] to calculate the stress intensity factor for 
specific geometric configurations. The motivation of this 
work comes from the aim to establish a relatively simple 
method for calculating the stress intensity factors for 
cracks emanating from circular holes in an infinite elastic 
solid under arbitrary loading. 
     Broek [3] first suggested a simple engineering 
solution for estimating the stress intensity factors for 
cracks emanating from notches. His idea was to consider 
the crack length as including the notch depth. Smith and 
Miller [4] proposed a simple formula for the stress 
intensity factor of small cracks at the root of a circular 
notch of finite depth. But it was found by Kotousov [5] 
that these methods can lead to significant error when 
different crack configuration and loading conditions 
need to be considered.   
      Another approximation was suggested by Lukas in 
[6]. He suggested the method for calculating the stress 
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Fig 1. Modes of loading in fracture mechanics. 
 

intensity factor for small cracks emanating from notches. 
Due to the origin of this approach, it is expected to 
provide good estimates only for the case where stress 
concentration factor is less than 3. Karlsson and 
Backlund in [7] used an analytical method to estimate KI 
for small cracks. The method was based on the solution 
of an edge crack in a semi infinite solid with a linear 
distribution of the tensile stress on the crack edges. 
     Another general method for calculating the stress 
intensity factors is the weight function method [8]. The 
weight function have been obtained for a wide range of 
geometries and loading conditions in particular for 
normal loading. However, the case of shear loading has 
not been considered. 
     In general, the approximate approaches considered 
above work well if applied appropriately. However the 
application of these approaches to different crack 
configurations can lead to significant errors. 
 
2. THEORETICAL EQUATION 
     The problem is approached by considering that the 
crack is subjected to the normal and shear loading 
conditions separately. Equations of elasticity for these 
cases are then applied. The problem is solved under the 
conditions of plane strain and the crack and the hole are 
defined in polar coordinates (rr, θ) by the relations 1≤rr≤b, 
θ = 0 and 0≤ rr ≤1, 0≤θ≤2π respectively (Fig. 2). As the 
loading is symmetric about the plane of the crack the 
problem can be reduced to that of finding a solution of 
the equations of elasticity for the region 1< rr < ∝, 
0<θ<π.  
     After finding the solutions of the equations of 
elasticity [9] and after applying the boundary conditions, 
the following Fredholm integral equation is obtained [9].  
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Fig 2. The crack geometry and loading condition. 
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2.1 The Stress Intensity Factor 
     From the solutions of the equations of elasticity for 
the problem of a crack emanating from the edge of a 
circular hole under combined normal and shear loading, 
stresses and displacement fields around the crack tip can 
be expressed in terms of P(t) and q(t), which are the force 
parameters at crack faces.  The stress intensity factor KI 
and KII can be expressed in terms of the displacement 
function. The stress intensity factor for both Mode-1 and 
Mode-II is usually defined by the following expression 
[9]- 
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KII=   (7)
 
 
Where the terms ur, uθ are displacement functions in r 
and θ directions and those can be expressed in terms of 
an integral equation of P(t). After some manipulation, it 
can be expressed as [9] 
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1 ≤ rr ≤ b                                                  (8)
 
Where P(t) can be  determined by solving the Fredholm 
equation (2). Accordingly the stress intensity factor 
assumes the following form, 
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This is the generalized equation of stress intensity factor 
for a radial crack emanating from the edge of a circular 
hole under combined normal and shear loading.  
     Now the parameter P(Rb) can be written in non 
dimensional form as q(b), 
 

σR
bPbq )()( = for normal loading and  

τR
bPbq )()( = for 

shear loading   
 
3. NUMERICAL FORMULATION 
By using the Gauss- Chebyshev quadrature formula and 
using the conception of non dimensional form of P(Rb) 
as q(b), it is be possible to replace the Fredholm integral 
equation (2) by the simultaneous linear equations as 
below 
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k = 1, 2, 3, ........n   [ n= no. of integration points] 
 
Using the non dimensional form of P(b), the stress 
intensity factors can be re-written as 
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So finally the following equations of stress intensity 
factors can be written   
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4. RESULTS AND DISCUSSION 
   Figure 3 shows the effect of normalized crack length on 
the normalized stress intensity factor for normal to shear 
loading ratio, S=2 at the boundary of the plate.  The 
figure shows that with the increase of normalized crack 
length b, stress intensity factor increases initially. When 
the value of b is about 1.25, the stress intensity factor 
reaches its maximum value of about 1.1. After this value 
 

Fig 3. Effect of normalized crack length on the mode-I      
stress intensity factor. 
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it finally achieves a value of 0.82. So under the above   
loading condition, it can be said that Mode-I stress 
intensity factor increases with increasing the crack length 
up to the value where the crack length is approximately 
25% of the hole radius. Figure 4 shows that mode-II 
stress intensity factor for the above loading condition 
increases continuously as normalized crack length or b 
factor increases. The rate at which KII increases is higher 
for the lower values of b. Unlike KI, KII always increases 
with the crack length and achieves maximum value at the 
maximum value of the crack length. Furthermore, this 
figure shows that until b equals to about 1.8, the rate of 
increasing the stress intensity factor is higher. 
     Figure 5 shows the variation of the mode-I stress 
intensity factor for different values of boundary stress 
ratio, S and for different values of crack length. As the 
normal to shear stress ratio at boundary is increased from 
0.1 to 2.35, overall magnitude of KI also increases. 
Moreover, for very smaller values of the stress ratio, KI 
does not significantly vary with b. But at higher values of 
the boundary stress ratio, KI has significant variation 
with b which is true in the lower range of b.  But for all 
the cases KI assumes the maximum value at about 
b=1.25.The effect of boundary stress ratio on normalized  

Fig 4. Effect of normalized crack length on mode-II 
stress intensity factor. 
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Fig 5. Effect of normal to shear stress ratio at boundary 

on the mode-I stress intensity factor. 
 
mode-II stress intensity factor can be observed from Fig. 
6. KII increases as the boundary stress ratio is decreased. 
There is small variation between the values of KII for 
different values of boundary stress ratio in the lower 
range of the crack length. The variation of KII for 
different values of stress ratio becomes greater at higher 
values of crack length. Again, for higher values of stress 
ratio or in other words, at lower values of boundary shear 
stress, stress intensity factor changes very significantly 
with the increase of the factor b. But for lower values of 
the shear stress, variation of KII is comparatively less. For 
b approximately equals to 1.2, KII values are 0.1 and 0.2 
for stress ratios 2.35 and 0.1 respectively. But for b 
equals to 3, KII values are 0.9 and 4.8 respectively. So, 
large variation in KII is present here.  
   In Fig. 7 the effect of factor b on (KI / KII) has been 
plotted for the boundary stress ratio 0.25. It is seen from 
the figure that the stress intensity factor ratio decreases as 
b increases. Up to b about1.2, KI is greater than KII, and 
after b=1.2, KII dominates. Again after b=2, the ratio (KI / 
KII) assumes a constant value. So for higher values of b, 
there is no effect of b on the stress intensity factor ratio 
for a particular loading condition. Fig. 8 shows the effect 
of boundary stress ratio on (KI / KII) for different b. It is 
clear from this figure that as the load ratio increases, (KI / 
KII) ratio also increases. Variation of (KI / KII) in lower 
range of S is greater than the variation in its upper range.. 

 
 

Fig 6. Effect of normal to shear stress ratio at boundary 
on the mode-II stress intensity factor. 

 

 
Fig 7(a). Effect of normalized crack length on the stress 
intensity factors ratio (KI / KII) for the boundary stress 
ratio of 0.25. 
 
For example, if we change the load ratio from 0.25 to 
0.75, (KI / KII) increases by about 50%. But in the upper 
range, if we change the load ratio from 1.75 to 2.25, (KI / 
KII) increases by only 12%. So from the point of view of 
(KI / KII) variation, a plate containing very small crack is 
more sensitive when it is mainly loaded with shear stress 
(load ratio in that case is smaller).   

Fig 7(b). Effect of normalized crack length on the stress 
intensity factors ratio (KI / KII) for different boundary 
stress ratio. 
 
5. CONCLUSIONS 
     The effect of various crack length on the stress 
intensity factor for a radial crack emanating from the 
edge of a circular hole under combined normal and shear 
loading condition is investigated in the present study. 
The numerical results of the present investigation are 
already shown. The following points can be noted from 
this study: 
i) The mode–I stress intensity factor KI increases with 

the increase of crack length up to a value where 
R
l

 

is approximately equal to 1.25. At this value crack 
length is 25% of the hole radius.  

ii) Mode-II stress intensity factor KII increases 
continually with the crack length. 

iii) With the increase of load ratio 
τ
σ

, KI and KII also 
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vary. Value of KI increases with the increase of 
τ
σ

, 

while the value of KII decreases. Again the change of 

KI with crack length is sharp for higher values of 
τ
σ

. 

But this tendency is reverse for KII. 
iv) The sensitivity of the ratio KI / KII to the change of 

load ratio is higher when a small crack is present in 
the body. A small change in load ratio can cause a 
large change of KI / KII  ratio.  
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
R radius of the hole (m) 

Rb distance between crack tip    
and  hole center 

(m) 

l  crack length (m) 
b non dimensional crack length   

(Rb/R) 
 

r distance from the hole center 
in radial direction 

(m) 

rr Normalized dimension (r/R)  
θ  angle from crack plane (Rad) 

KI 
mode-I stress intensity factor mMPa

 
KII mode-II stress intensity factor mMPa  

σ normal stress component at 
boundary 

(N/m2) 

τ  shear stress component at 
boundary 

(N/m2) 

S normal to shear stress ratio at 
boundary 

(N/m2/ 
N/m2) 

ρ  radius of curvature at notch tip (m) 
P(t) a stress function (N/m) 
q(t) normalized stress function  
s(t) normalized  stress function  
ν  Poission’s ratio  

 


