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1. INTRODUCTION 
     The elastic circular plate with an annulus of 
non-uniform thickness is commonly used now-a-days for 
designing of machine parts, such as diaphragms of steam 
turbines, pistons of reciprocating engine etc. The 
analysis of the bending solution of a symmetrically 
loaded annular plate of variable thickness has been 
studied by many researchers [2–4], and also available in 
many textbooks on plate and shells such as Timoshenko 
and Woinowsky-Krieger (1959). But, most of the 
analyses are based on Kirchhoff thin plate theory, where 
the effects of transverse shear deformation are not 
considered. Recently, Wang and his co-researchers [5–7] 
have presented the exact bending relationship of first 
order shear deformable plate in terms of Kirchhoff 
solutions. Wang et. al [8] also introduced the bending 
relationship between the Kirchhoff and of higher order 
Levinson plate theory for a circular plate with constant 
thickness. The bending relationship between higher order 
Levinson plate and Kirchhoff thin plate is formulated 
with the help of mathematical similarities of the 
governing equations on the basis of load equivalence.   
     Deflections and radial stress are compared with the 
results obtained by Kirchhoff classical thin plate theory 
[1]. Also, the results for the maximum deflection and 
radial stress obtained from the present solution for the 
plate with external edge free, and internal edge clamped 
and supported are compared with the results obtained by 
Wang (1997) [6] (based on Mindlin plate theory) and 
Conway [4] (based on Kirchhoff thin plate theory).  A 
perfect correlation has been observed.  
 

2. GOVERNING EQUATIONS 
     The equations of equilibrium for a circular plate 
(Timoshenko & Woinowsky-Krieger 1959) are given by  
 

rrr rQMrM =− θ),(    and  rqrQ rr −=),(               (1a, b) 
 
According to Kirchhoff, the relation between bending 
moment and displacements are given by 
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Equations (2a), (2b), and (1a) yield, 
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The Levinson stress-resultant and displacement relations 
[8] are given by 
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where, � = h/r = H/a is the thickness ratio of the plate.  
Equations (4a), (4b), and (1a) yield, 
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Based on the concept of load equivalence of two theories, 
equation (1b) gives, 
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Using the regularity condition at r = 0 for circular plate or 
the statical boundary condition Qr = 0 at the free edge for 
the annular plates, it follows from equation (6) the shear 
force of Levinson and the corresponding Kirchhoff plate 
is same, i.e, 
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For ν = 1/3, equations (3), (5), and (7) yield 
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The solution of equation (8) is 
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where, A and B are constants of integration. 
     To establish the relation of stress-resultant between 
Levinson and Kirchhoff plates, multiply equation (9) by 
(ν/r) and add with the differential form of equation (9) 
w.r.t. ‘r’. The relation becomes as follows, 
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3. PLATE WITH A UNIFORMLY DISTRIBUTED 

LOAD OF INTENSITY ‘q’ 
     By integrating equation (1b), one can obtain the 
following relationship with the help of equation (4c) and 
equation (7), 
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Adding equation, (9) and (11) to eliminate the slope of 
Levinson, and obtain the following relationship between 
the rotations of Levinson plate with the slope of 

Kirchhoff plates, 
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Use equation (11) and (9) to eliminate the rotation (
Lψ ) 

of Levinson plate and it yield,  
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Integrating equation (13) to establish the relationship 
between the deflection of Levinson and Kirchhoff plates 
as follows, 
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Three cases of some practical importance are considered 
as follows: 
 
3.1 External Edge Clamped and Supported, 

Internal Edge Clamped (ECS – IC) 
     The boundary conditions are, 

⎪⎭

⎪
⎬
⎫

===

===

0                      

0                              ,

,

,

K
r

L

K
r

L

w  b,       r 

w ar 

ψ

ψ

                 (15) 
 
The constants A and B are found from equation (12), 
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where, n =a/b is annular ratio of the plate. 
The constant C of the equation (14) is obtained from the 
condition of zero deflection at the outer edge (i.e., at r = a, 
wK = wL = 0). Evaluating A, B, and C, the deflection 
equation is to be found, 
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non-dimensional deflection of Levinson and Kirchhoff 
plates, and �represent the nondimensional radius (r/a). 
The relation of radial stress between Levinson and 
Kirchhoff are obtained from equation (10) and (16), 
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with, 
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3.2 External Edge Simply Supported and 
Internal Edge Clamped (ESS – IC) 

      The boundary conditions are, 
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Putting above boundary condition of equation (20) into 
equation (10) and (12), constants A and B are found,  
 
A = B = 0                    (21) 
The deflection of Levinson plate in terms of Kirchhoff 
plate is obtained from equation (14),  
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Constant C is to be found from the condition of zero 
deflection at the outer edge (i.e., at r = a, wK = wL = 0) 
and the equation (22) yields in nondimensional form as,  
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The relationship of radial stresses between Levinson and 
Kirchhoff are obtained from equation (10) and (21) and 
given same value. 
The maximum stress are found at inner edge [1], 
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3.3 External Edge Free, Internal Edge Clamped 

and Supported (EF – ICS) 
 The boundary conditions are, 
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The shear force, 
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Constant A and B are to be obtained,  
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     The deflection equation of Levinson plate in terms of 
Kirchhoff plate is obtained from equation (14) with 
condition of zero deflection at inner edge (i.e. at r = b, wK 

= wL = 0). The maximum deflection occurred at the free 
edge (i.e. at r = a) 
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The Levinson radial stresses in terms of Kirchhoff plate 
are to be found from equation (10) and (27), 
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Whereas, Wang [6] expressed that maximum radial stress 
of Mindlin plate is same of Kirchhoff plate.  
 
4. PLATE WITH A TOTAL LOAD ‘P’ UNIFORMLY 

DISTRIBUTED AROUND A CENTRAL HOLE 
     The shear force for the plate with total load P 
uniformly distributed around a central hole yield, 
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Equation (30) and equation (4c) yield,  
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The relationship between the rotations of Levinson plate 
and the slope of Kirchhoff plates are obtained by adding 
equation (9) with equation (31), 
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Again, equation (31) and equation (9) yield, 
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The deflection of Levinson plate in terms of Kirchhoff 
plate to be obtained from equation (33),  
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4.1 Plate with External Edge Simply Supported, 

and Free at Inner Edge (ESS – IF) 
 The boundary conditions are 
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Constants A and B of equation (34) are to be found by 
putting boundary conditions into equation (10), 
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A = B = 0,                    (36) 
 
The non-dimensional deflection of Levinson plate in 
terms of Kirchhoff plate are to be found from equation 
(34) after determining the constant C from the condition 
of zero deflection at external edge, 
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     The value of radial stresses for the Levinson plate and 
Kirchhoff plate are found to be same from the equation 
(10) and (36). 
 
4.2 External Edge Clamped and Supported, 

Internal Edge Clamped (ECS – IC) 
 The boundary conditions are, 
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Constants A and B are to be obtained from equation (32), 
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The deflection of Levinson plate in terms of Kirchhoff 
plate are obtain from the equation (34) with the condition 
of zero deflection at outer edge, 
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The relationship between Levinson and Kirchhoff plate 
for radial stresses yield from equation (10)and (39), 
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4.3 External Edge Simply supported, internal 

edge clamped (ESS – IC) 
 The boundary conditions are, 
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The constants A and B are to be found by putting the 
boundary conditions of equation (42) into equation (10) 
and equation (32),  
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The deflection Levinson plate in terms Kirchhoff plate 
yields by putting the value of A and B into equation (34), 
and determining the constant C from the condition of 
zero deflection at the outer edge,  
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Using the equation (14) and (43), the radial stresses of 
Levinson plate are obtained in terms of Kirchhoff plate 
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5. RESULTS AND DISCUSSION 
     The Poisson’s ratio for the bending analysis of 
linearly varying annular elastic plates are taken as ν = 1/3. 
Results are presented for the plate under uniformly 
distributed load of intensity q, and total load P uniformly 
distributed around the central hole. Plate with ECS – IC, 
ESS – IC, EF – ICS, and ESS – IF are considered in the 
present study. Nondimensional deflection vs. 
nondimensional radial coordinate of higher order 
Levinson plate and Kirchhoff plate are plotted from Fig.1 
to Fig.5. Table 1, and Table 2 shows the result for 
maximum deflection and stresses of various annular 
ratios for EF - ICS plate under uniformly distributed load. 
Results are compared with the result obtained from Wang 
(based on Mindlin plate theory and shear correction 
factor taken, k2 = 5/6) [6] and Conway (based on 
Kirchhoff thin plate theory) [2]. Here it has been 
observed that the Levinson transverse deflection is 
greater than the deflection obtained from Mindlin and 
Kirchhoff theory and the differences are increased with 
the increasing the thickness ratio (H/a). Also, these 
differences are increased with the decrease of annular 
ratio (n = a/b). For a/b = 1.25 and H/a = 0.2, the present 
result for transverse deflection (based on Levinson) is 
16.75% and 35.75% more than the result obtained by 
Wang and Conway respectively. Whereas, these 
differences are only 2.14% and 6.17% for a/b = 5 and H/a 
= 0.2. According to Wang [6], radial stresses obtained 
from Kirchhoff and Mindlin are same. But, the present 
results based on Levinson plate theory deviate for EF – 
ICS plate from 18.54% to 1.68% for different cases. 
     Fig. 1 and Fig. 2 shows ECS – IC plate with annular 
ratio a/b = 10/3. It has been observed that the Levinson 
transverse deflection increases with the increase of 
thickness ratio. For H/a = 0.2, the present result shows 
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16.25% and 16.41% more from Kirchhoff solution for 
maximum deflection of the plate with uniformly 
distributed load q and central load P respectively. Fig. 3 
and Fig. 4 shows ESS – IC plate under load q and ESS – 
IF plate under load P respectively with annular ration a/b 
= 10/3. It has been observed that for both cases the higher 
order shear effect is negligible and in the present result 
the deflection increases from 1% to 2% for maximum 
deflection. Fig.5 represent ESS – IC plate under load P. 
Here present result shows the effect of higher order shear 
deformation on deflection and this effect is more 
prominent near to the clamped edge support. Most of the 
cases the Levinson stresses are either equal or very small 
differences with the stresses obtained from Kirchhoff 
plate theory.  
 
 

6. CONCLUSIONS 
     It has been observed that present solution procedure is 
simple to solve the higher order Levinson plate theory 
without any mathematical difficulties and numerical 
calculation. Present solution gives a closer result of 
Kirchhoff solution and shows how the effect of 
transverse shear deformation influences for the 
deflection and radial stresses. The effect of transverse 
shear deformation is more for the case of clamped edge 
and increases with the increase of thickness ratio (H/a). 
This shear effect is also increases with the decrease of 
annular ratio (a/b). The accuracy for the nondimensional 
transverse deflection and radial stresses obtained by the 
present method is found to be fairly good in agreement 
for the different boundary conditions and loading. 

Table 1: Comparison of nondimensional maximum deflection for EF–ICS plate under uniformly distributed load of 
intensity q 

 
Wang [6] M 

Mw.max  
Present result L 

Lw .max  
H/a H/a 

Annular 
Ratio 

n = a/b 

Conway 
et.al [2]  

Kw .max  
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 

1.25 0.00372 0.0041 0.0048 0.0060 0.0077 0.0121 0.0370 0.0786 0.1367 
1.5 0.0453 0.0461 0.0485 0.0525 0.0587 0.0543 0.0814 0.1265 0.1897 
2 0.4010 0.4032 0.4104 0.4224 0.4392 0.4119 0.445 0.5001 0.5773 
3 2.1190 2.1264 2.1456 2.1776 2.2224 2.1355 2.1819 2.2592 2.3675 
4 4.2450 4.2557 4.2881 4.3421 4.4177 4.2647 4.3241 4.4232 4.5619 
5 6.2830 6.2981 6.3441 6.4209 6.5285 6.3068 6.3792 6.4998 6.6686 

  
Table 2: Comparison of non-dimensional maximum radial stresses for EF–ICS plate under uniformly distributed  

load of intensity q 
 

Present result L 

L
rσ .max  

H/a 

Annular 
Ratio 

n = a/b 

Conway et.al [2]  
K

rσ .max  
Wang [6] M 

K
r

M
r σσ  .max .max =  

0.05 0.1 0.15 0.2 
1.25 0.249 0.249 0.2491 0.2493 0.2497 0.2953 
1.5 0.638 0.638 0.6384 0.6396 0.6415 0.6443 
2 3.96 3.96 3.962 3.9679 3.9777 3.9915 
3 13.64 13.64 13.649 13.676 13.720 13.782 
4 26.0 26.0 26.02 26.079 26.177 26.315 
5 40.63 40.63 40.664 40.774 40.942 41.313 
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Fig 2. Deflection profiles of ECS-IC plates under 
load P uniformly distributed around a central hole
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Fig 3. Deflection profiles of ECS-IC plates under 
uniformly distributed load of intensity q
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8. NOMENCLATURE 
 

Symbol Meaning 
Mr , Mθ Radial and tangential Moment 
Qr Shear force 
D Flexural rigidity of plate 
β Nondimensional radius (r/a) 
n Annular ratio (a/b) 
α Thickness ratio (H/a or h/r) 
ψL Rotation due to Levinson 
(  ), r Derivative w.r.t ‘r’ 

 w   Nondimensional deflection  
σ   Nondimensional stress 
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Fig 3. Deflection profiles of ESS-IC plates under 
uniformly distributed load of intensity 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 Kirchhoff
 H/a=0.05
 H/a=0.1
 H/a=0.15
 H/a=0.2

r

P P

H

a
b

N
or

m
al

iz
ed

 tr
an

sv
er

se
 d

ef
le

ct
io

n,
 w

EH
3 /P

a2

Dimensionless radial cordinate

Fig 4. Deflection profiles of ESS-IF under load 
uniformly distributed around a central hole 
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Fig 5. Deflection profiles of ESS-IC under load 
uniformly distrib`uted around a central hole 


