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1. INTRODUCTION 
     Flow through circular pipes with successive 
restrictions has important industrial applications in the 
fields of thermal and fluid engineering. Particularly its 
importance is noted in process industries under particular 
process requirement and in the design of heat 
–exchanging equipment, where restrictions can act as 
fins. The associated flow patterns developed due to the 
presence of such restrictions can be quite complex with 
the development of recirculation zones and their 
interactions with the confined jet. It has great influence 
on heat transfer effectiveness and pumping power 
requirement. Another application of this type flow 
situation can be observed in the field of Bio-Mechanics 
where the model can be used to study the blood flow 
through stenosed coronary artery for different percentage 
of stenosis. The importance of this type of study can be 
appreciated from the fact that major causes of death of 
human being in developed and developing countries are 
identified as due to the cardiovascular diseases. It is 
believed that the effect of interaction between the 
processes of oxidation, inflammatory response coupled 
with the phenomenon of cholesterol deposition causes 
the hardening of the artery followed by narrowing effect 
of the flow passage area results in the event of stenosis of 
the artery which results in reduction of blood flow and 
depletion of oxygen in different cells of the body. This 
clearly shows the importance of study of such flow 
hydrodynamics. 

     Patankar et al. [7-10] studied laminar and turbulent 
flow restricted through fins to show the effect on heat 
transfer. Austin et al [2] studied flow through Toroidal 
geometry to correlate Dean number with diametral 
pressure drop. 
      Fossa et al. [3] studied experimentally flow disturbed 
by thin and thick orifices placed in the two phase flow 
field. Oliveira and Pinho [6] studied the pressure 
variation in flow through sudden expansion. Such a study 
has important implications in the flow through 
restrictions as well. 
     Bio-mechanical applications of the present model can 
be found from the studies made by Siouffi et al.[14], 
Reese and Thompson [11], Zendehbudi and Moayeri 
[13],Tang et al.[12] , Anderson et al.[1], etc. The 
researchers , with the help of the computational modeling, 
have studied the different  effects of blood flow 
hydrodynamics, particularly the pressure variation across 
the restriction and the distribution of Wall Shear Stress 
(WSS) ,etc in great details.In the present paper, results of 
a numerical study of axi-symmetric, laminar, 
incompressible flow through circular pipe with 
successive restrictions are presented. Two successive 
annular restrictions are considered to be fitted in the 
internal surface of the pipe through which the flow has 
been studied. The height of the restrictions equals the 
radius of the pipe and a separation distance of 4Do is 
maintained between the restrictions. 
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2. THEORETICAL FORMULATION 
     The flow field is determined by solving the following 
equations in the computational domain using an explicit 
finite difference scheme.  

(a)Equation of Continuity: 
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(b) Momentum Equation in z - direction : 
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(c) Momentum Equation in r- direction : 
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The associated boundary conditions are: 
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Solid Boundaries including restrictions:  0,0 == vu  
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     The details of the geometry under study are shown in 
Fig 1 along with the computational domain which is 
shown as dotted line.The governing equations are 
discretised  by a higher order upstream biased scheme – 
QUICK ( Leonard [4] ). The variable values are 
advanced over time step satisfying the 
Courant-Friedrichs –Lewy criteria and the grid Fourier 
number for each cell. 
 

 
Fig 1. Physical geometry of the model under study. 
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Fig 2a. Variation of axial velocity at Re=10 for Do/db =2 
 
     The pressure-velocity coupling is achieved using the 
SOLA scheme [Hirt and Cook (1972)]. The entire code is 
described in the earlier work of Nag and Datta [5].      
 
3. RESULTS AND DISCUSSION 
     The numerical code, after extensive testing for grid 
independence and validation by comparing the 
predictions with the results already published in the 
literature (Nag and Datta [5] ) is applied to study the flow 
field with two successive restrictions for a range of Re = 
10 and 150. It is observed that if the restriction size is 
small, no recirculation is formed at the trailing edge of 
the restrictions for lower Re value. However, prominent 
recirculation zones appear as Re increases. It is noted that, 
the recirculating zone after the second restriction is 
comparatively longer than that after the first restriction.  
 
3.1 Velocity Variation 
     The fully developed parabolic velocity profile is 
considered at the inlet plane of the pipe. Figs 2a and 2b 
show the radial distributions of the axial velocity profiles 
at different axial positions along the length of the pipe for 
two different Reynolds numbers (Re= 10 and 150). The 
parabolic profile is maintained for some length before the 
first restriction is approached in both the cases, as are 
shown by the velocity profiles at Z/.Do = 2.11 (Figs 2a 
and 2b). When the first restriction is reached, the fluid 
flow gets obstructed near the periphery and tends to 
converge towards the core. As a result, the axial velocity 
near the core increases. Fig 2a shows that upstream to the 
first restriction a parabolic profile with much higher 
centerline value is observed to exist up to a radial 
position equal to the passage opening and then a sudden 
jump in velocity occurs to a much lower value. From this 
point up to the wall the axial velocity falls almost linearly 
to the zero value. Just downstream to the first restriction, 
the axial velocity at the core gets further accelerated 
maintaining a near parabolic shape. A recirculation zone 
with negative axial velocity is now observed at the 
periphery. It is important to observe from the velocity 
distributions across the first and second restrictions in 
this case (Fig 2a) that they are exactly identical. This 
proves that for a low Re = 10 and with present size of the 
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restriction and the separation between them, the flow 
repeats itself across every restriction. 
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Fig 2b. Variation of axial velocity at Re=150 for Do/db=2 
 
     Fig 2b shows the results at a higher Re=150. 
Differences are now observed in the velocity profiles 
across the two restrictions. Upstream to the first 
restriction the axial velocity profile again is distorted 
from the original parabolic shape. The velocity profile in 
the core and up to the radius of the passage opening 
maintains a parabolic shape with much higher center line 
value. However, unlike in the previous case, there is no 
sudden jump in the axial velocity. Instead, the velocity 
gradually reduce up to r / Ro = 0.5 and then falls linearly 
to zero. Down stream to the first restriction, the 
maximum axial velocity shifts to an off-axis location and 
a much wider wall recirculation zone is observed. The 
shapes of the velocity profiles upstream and downstream 
to the second restriction are somewhat qualitatively 
similar to those around the first restriction but differ 
quantitatively from one another. Particularly important is 
that the velocity near the periphery upstream to the 
second restriction is still negative over a certain radial 
position, showing that the recirculation zone down 
stream to the first restriction fills the entire space 
between the two restrictions. These results indicate for a 
particular size and spacing of the restrictions, the 
velocity distributions do not repeat themselves across 
every restriction beyond a critical Reynolds number. 
 

 
 

Fig 3a. Velocity plot at Re=10 for Do/db=2 
 
     Fig 3a and 3b show the velocity vector plots for the 
conditions represented by Re = 10 and Re =150 for the 
case when Do/db = 2. 

     The Fig 3a shows the partial flow field and the 
recirculation zones created by the obstructions placed at 
a distance of 4Do apart. At this small value of the 
Reynolds number, the reicirculation zones are formed 
downstream of the each restriction but the recirulation 
size is too small to engulf the inter-spacing distance 
between the restrictions. Obviously, at such a small 
Reynolds number, the exact repeatability of the flow 
structure and hence the velocity variations etc, can repeat 
itself should there be a periodic arrangement of the 
restrictions along the stream-wise direction. 
     A distinctive difference in pattern of the velocity 
vector plot can be observed in the Fig 3b where 
conditions are depicted for a higher Reynolds number for 
the same geometric arrangement of the flow passage. 
     In this case, again the recirculation zones are formed 
as usual at the downstream portion of the each restriction 
placed at a distance of 4Do apart. As the flow velocity 
increases with the increase of the inlet Reynolds number, 
the recirculation zones also grow bigger and one 
recirculation zone covers completely the interspacing 
distance between the two successive restrictions. 
Consequently, each flow field separated by the 
compartment zone created by the restriction gets 
influenced by the previous flow filed. Obviously, in such 
cases, the exact repeatability of the flow structure as well 
as the velocity filed, etc are lost in the cases of the 
periodic arrangement of the restrictions placed along the 
stream –wise direction in the flow field. 
    

 
 

Fig 3b. Velocity plot at Re=10 for Do/db=2 
 
3.2 Pressure Variation 
     Progressive pressure drop along the full pipe length, 
expressed in terms of pressure drop coefficient Cp , are 
shown in Figs 4a and 4b for Re= 10 and 150, respectively. 
It is observed from the fig 4a that the pressure drop 
across each of the restrictions is of the same order for low 
Re. It is also seen from the figure that at each restriction 
the pressure initially falls and subsequently some 
pressure recovery takes place as the flow adjusts itself. 
The equal velocity change across each restriction at low 
Re found earlier is corroborated by the pressure 
distribution. Fig 4a also shows the theoretical pressure 
distribution line for fully developed pipe flow. It is found 
that at some distance downstream to the first restriction, 
the predicted pressure drop line with restrictions 
becomes parallel with the theoretical line only with a 
lateral shift. This shows that the flow achieves its fully 
developed characteristics after getting distorted at the 
first restriction and before the second restriction is 
reached. 
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     The situation is not so with higher Re as depicted in 
Fig 4b. Here it is observed that a large drop in pressure 
occurs across the first restriction and the pressure 
recovery still continues when the second restriction is 
reached. The pressure upstream to the second restriction 
is much low as the recirculating eddy extends up to this 
point. Further drop in pressure occurs across the second 
restriction plate, but this drop is much smaller than that 
across the first restriction. The pressure recovery again 
occurs downstream to the second restriction and finally 
the Cp line becomes parallel to the theoretical line, 
indicating that the fully developed pipe flow is reached. 
     A variation of wall shear stress at the pipe surface is 
studied along the pipe length and expressed in terms of 
friction factor (f ) for two different Re ( Figs 5a and 5b). 
the theoretical value of ‘f ’ for fully developed pipe flow 
given by Darcy-Weisbach equation f = 64/Re is also 
drawn for the sake of comparison. Negative value of ‘f’ 
indicates reversal of flow at the wall. Fig 5a clearly 
shows identical changes in ‘f’ across each restriction and 
it further shows that the sizes of the recirculating eddy 
with negative velocity adjacent to the wall across each 
restriction are small.  
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Fig 4a. Variation of Pressure drop coefficient at Re =10 

 for Do/db =2 
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Fig 4b. Variation of Pressure drop coefficient at Re= 150 

 Do/db = 2 
 

     Fig 5b, however, indicates that ‘f’ is negative in the 
entire interspace, showing the existence of the 
recirculating eddy there. The repeatability in the 
variation of ‘f’ across the restrictions is clearly lost in this 
case. 
 
4. CONCLUSIONS 
     A numerical study of laminar, incompressible flow 
through a circular pipe with two successive annular 
restrictions is studied. The velocity and pressure 
variations across the length of the pipe and the variation 
of the friction factor are studied with particular interest to 
focus on the changes across the restrictions. It is found 
that, at low Re, the variations across the first restriction 
exactly repeats themselves across the second. This 
repeatability is lost at high Re. Beyond a critical Re, 
based upon the restriction size and their interspacing the 
recirculating eddy downstream to the first restriction 
extends up to the second one. Under that condition, the 
pressure drop across the first restriction far exceeds that 
across the second and the wall friction factor remains 
negative throughout the interspacing. In such a situation, 
no single mathematical expression for pressure drop can 
be used for each restriction. 
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Fig 5a.Variation of friction factor at Re=10 for Do/db=2 
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Fig 5b.Variation of friction factor at Re= 150, Do/db= 2 
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6. NOMENCLATURE 
 

Symbol Meaning Unit 

Cp Coefficient of Pressure  
(= p∂  / dynp ) 

- 

db 
 

Diameters of  Restrictions (m) 

Do 
 

Outer Diameter of Pipe (m) 

Lc 
 

Computational Length (m) 

fcalc Friction Factor from Wall 
Shear Stress 
( = wτ8  / ρ u2 avg) 

- 

ftheo Friction Factor from Darcy- 
Weisbach Equation (=  64/Re ) 

- 

p  Thermodynamic Fluid 
Pressure  (abs.)   

(Pa) 

∞p  
 

Upstream Fluid Pressure   (Pa) 

dynp  Dynamic Pressure  

(=
2
1 ρ u 2 avg ) 

(Pa) 

p∂  
 

Pressure Drop (= p  - ∞p ) (Pa) 

r  
 

Radial Distance (m) 

r o 
 

Outer Radius of Pipe (m) 

Re Reynolds Number 
(= ρ u do/ µ  ) 

- 

t  
 

Time (sec) 

u avg 

 
Mean Axial Velocity (m/s) 

u  
 

Axial Velocity (m/s) 

v  
 

Radial Velocity (m/s) 

z  
 

Axial Distance (m) 

ρ  
 

Density of Fluid (Kg/
m3) 

µ  Dynamic Coefficient of 
Viscosity 

(Pa.s) 

wτ  Wall  Shear Stress (Pa) 

 
 
 
 

 


