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1. INTRODUCTION 
     The incompressible flow of Newtonian fluids past a 
circular cylinder represents classical problem in fluid 
mechanics. Several works have been carried out both 
numerically and experimentally for flow past an isolated 
cylinder in infinite flow field. A vast body of literature 
containing experimental, numerical and analytical 
studies is available on the flow past a circular cylinder 
[1-2]. 
     For flow past a circular cylinder, the flow is 
characterized by the cylinder diameter (D), the free 
stream velocity (U) and the Reynolds number (Re). It is 
well established that the separation of boundary layer on 
the cylinder surface begins at Reynolds number equal to 
5 [3].  Between Reynolds numbers 10 to 40 a pair of 
steady symmetric vortices develop behind the cylinder 
and the re-circulation zone length grows linearly with 
increase in Reynolds number. The vortex shedding 
occurs for Reynolds number above 49. The vortex 
shedding flow remains laminar for Reynolds number up 
to around 150 [4]. Transition to three -dimensional flow 

starts at Reynolds number of around 180-194 depending 
on experimental condition and ends at Reynolds number  
equal to about 260 at which fine scale three - dimensional  
 eddies appear [5].  
     The flow of viscous incompressible fluid past a 
circular cylinder in an unconfined domain was first 
studied systematically by Kawaguti and Jain [6] for 
Reynolds number ranges from 1 to 100. The steady state 
solution was numerically obtained up to a Reynolds 
number of 50. In their results the streamlines and 
iso-vorticity contours along with the drag co-efficient 
and the angle of separation, length of the standing vortex 
and surface pressure distribution were computed as a 
function of Reynolds number and time. 
     Karniadakis [7] investigated forced convection heat 
transfer from an isolated cylinder in cross flow for 
Reynolds numbers up to 200 by direct numerical solution. 
In their study they presented spatial structure of von 
karman vortex street, the unsteady lift and drag 
co-efficient and unsteady local heat transfer co-efficient. 
     However, when a circular cylinder is placed near a 
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plane wall, the separation and wake development will 
depend on the Reynolds number, the gap ratio and the 
characteristics of the wall boundary layer of the wall. 
Various studies mostly experimental have been done 
over the past few decades [8-9]. Most of the experiments 
were carried out at Reynolds number in the sub critical 
regime. The flow regime that is relatively insensitive to 
Reynolds number is selected for the experiments. The 
effect was investigated thoroughly without complicating 
influence of the Reynolds number. Taneda [10] carried 
out an experiment at low Reynolds number up to 170.  
     At the present time, very few numerical studies have 
been reported for the flow past a circular cylinder near a 
plane wall particularly during the transient process. Lei 
et al [11] investigated vortex shedding near a plane wall 
for different gap ratios and different Reynolds numbers 
ranging from 80 up to 1000.They observed vortex 
shedding phenomenon using various methods. They 
showed the relation of Reynolds number and gap ratio at 
which suppression of vortex shedding occurs. 
     In summary, majority number of works done as 
discussed above is made of the isothermal flow past a 
circular cylinder. More work is needed to be done to 
achieve a better understanding regarding heat transfer 
from a cylinder near a plane wall in cross flow. In our 
present study a non isothermal   case is considered for 
flow past a circular cylinder in the vicinity of a plane wall. 
In this study a hot fluid is considered to flow past a cold 
circular cylinder near a plane wall. In this study, the two 
dimensional Navior-Stokes equations for time-dependent, 
viscous and incompressible flows along with continuity 
equation and energy equation are solved using vorticity - 
stream function formulation by finite difference method. 
Velocity components are obtained from stream function 
in each time step. The temperature field is obtained after 
solving Energy equation. The local Nusselt number and 
average Nusselt number around the cylinder is calculated 
form temperature field. The grid in this study is 
generated numerically by solving Laplace equations as 
the generating system. The numerical method developed 
in this study has been validated against the bench mark 
problem of an uniform flow past an isolated circular 
cylinder. With this numerical procedure the vortex 
shedding flow across circular cylinder near a plane wall 
at different gap ratios is investigated for different 
Reynolds numbers up to 150.The effect of Reynolds 
numbers in fluid flow and heat transfer is analyzed and 
results are presented for various gap ratios. 
 
2. GOVERNING EQUATIONS AND NUMERICAL  
    METHOD 
     The fundamental equations for two dimensional 
incompressible unsteady viscous flow with no body 
forces in Cartesian co-ordinate system are, 
 
(A) Continuity equation: 
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(B)    X-momentum equation:    
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(C)    Y-momentum equation:     
                                    

)3()(1
2

2

2

2

y

v

x

v
y
P

y
vv

x
vu

t
v

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂

∂ γ
ρ

 
(D)    Energy equation:       
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From equation (2) & (3) pressure term is eliminated with 
the help of equation (1).  
Again by defining vorticity (ω) as  
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Vorticity - transport equation can be written as  
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 Now by defining stream function (ψ) by  
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and with the help of equation (5) stream function 
equation is derived as   
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Therefore the equations which are solved in this study for 
unsteady incompressible viscous flow are equations (6), 
(8) & (4). 
     The non-dimensional form of these equations in 
Cartesian co-ordinates are written as 
     Vorticity-Transport equation: 
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Stream function equation:     
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 Velocities: 
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Energy equation:         
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     In order to solve equations (9), (10), (11) & (12)  in a 
curvilinear co-ordinate system, the co-ordinate 
transformation considered is  
 
ξ  =  ξ (x, y)                                                               (13a) 
      
η =  η ( x, y)                                                              (13b) 

Here (ξ,η) is the co-ordinate system in the computational 
plane. With the above transformation the non 
dimensional  equations can be transformed into the 
computational co-ordinates (ξ,η) as follows.  
     Vorticity-transport equation in the computational 
plane is rewritten as 
 
αωξξ+2βωξη+γωηη+δωξ+εωη=Re[u(ωξξx+ωηηx)+v(ωξξy+ω
ηηy)]+Reωt                                                                                                      (14)                                                                             
 
     The stream function equation in the computational 
plane is rewritten as 
 
αψξξ+2βψξη+γψηη+δψξ+εψ=-ω                                   (15) 
 
Velocities  are rewritten as 
 
u=[ξyψξ+ηyψη]                                                             (16a) 
v=-[ξxψξ+ηxψη]                                                           (16b)             
 
and the energy equation in the computational plane is 
rewritten as 
  
αTξξ+2βTξη+γTηη+δTξ+εTη=Re 
Pr[u(Tξξx+Tηηx)+v(Tξξy+Tηηy)]                                                   (17)  
   
Where subscripts denote differentiation. 
 The co-efficients are given by  
 
α =ξx

2+ξy
2                                                                            (18)  

β = ξxηx+ξyηy                                                                                               (19)  
 γ = ηx

2+ηy
2                                                                   (20)  

δ =ξxx +ξyy                                                                                         (21)  
 

ε = ηxx + ηyy                                                                                                  (22) 
u = (ξyψξ +ηyψη)                                          (23) 
v = (ξxψξ +ηxψη)                                                           (24) 
 

The above equations are solved by finite difference 
implicit method. 

 
3. PHYSICAL FLOW FIELD AND NUMERICAL   
    PARAMETERS 
    In this study, a rectangular flow field is considered as 
shown in fig.1. Four types of G/D ratio, G/D= 0.3, 0.5, 
0.8 and 1.0 is considered. Horizontal position of the 
cylinder is considered at a distance of 5D from inlet.  Top 
boundary is set to 11D distance from bottom wall and 
outlet boundary is set at 27D distance from the cylinder 
centre.  

                    Fig 1. Layout  of Physical Flow Field 
 

 
 

Fig 2. Mesh around the cylinder for G/D=0.8 
 

     In this study, 141x60 grids with 72 nodes on cylinder 
surface are considered as these grids are found to be 
adequate in solving the present problem. The grids near 
the cylinder is shown in fig. 2 for G/D=0.8.  
     In this study, calculations are done with a 
non-dimensional time step of t = 0.005. The vorticity 
transport equation, stream function equation and energy 
equation are solved through second order central 
difference. 
 
4. BOUNDARY CONDITIONS      
    Vortcity-Stream function formulation using finite 
difference method needs careful representation of 
boundary conditions for vorticity and stream function at 
all boundaries. Both Dirichlet and Neumann boundary 
conditions are used in boundaries wherever applicable. 
At inlet uniform longitudinal velocity and zero 
transverse velocity is selected. At no-slip boundary of 
wall and cylinder surface zero velocity components are 
considered. Boundary conditions for vorticity and stream 
function as follows. 
     Boundary condition for vorticity: - 
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        ω = 0   at inlet, bottom and top boundary          (25) 
 
∂ω/∂x = 0   at outflow boundary                                  (26) 
 

Boundary condition for stream function: - 
 
ψi, j =∫ udy   at inlet boundary.                                    (27) 
∂2ψ/∂x2 = 0  at outlet boundary                                   (28) 

∂ψ/∂y =u=1  at top boundary                                      (29) 
ψ =0  at bottom boundary.                                          (30) 
 
     Boundary condition for vorticity and stream function 
at cylinder surface and wall :  
The no penetration boundary condition for u indicates 
that at cylinder surface  ψcyl  = constant                   (31)              
while no-slip boundary condition for u at cylinder 
surface  shows that  
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the value of ψcyl  is constant , which is need to be updated  
at every time step. 
Again since the Stream function is uniquely determined 
up to a constant, the constant at the no-slip wall can be set 
as zero. Thus 
Ψwall = 0                                                      (34) 

 
Boundary condition for Temperature: - 
                T=1   at inlet boundary 
                T=0  at  cylinder surface 
               ∂T/∂y =0   at top and bottom boundary 
               ∂T/∂x =0   at outlet boundary 
 
5. NUSSELT NUMBER 
    The heat transfer co-efficient  or local Nusselt number 
around the cylinder for each gap ratio and different 
Reynolds number is determined by the following 
expression, 
 
Local Nusselt number   Nuθ = ∂T/∂R(R,θ)  R=D/2           (35)  
 
    The local Nusselt number varies with the angle around 
the cylinder . The angle is measured clockwise from the 
forward stagnation point as shown in fig.3. 

 
Fig 3.Position of angle on cylinder surface. 

 

     Mean Nusselt number around the cylinder is 
determined from the following expression : 
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6. RESULTS AND DISCUSSION 
     From the governing equations it is seen that the heat 
transfer and fluid flow characteristics depends upon 
Reynolds number and  Prandtl number. In this present 
paper the fluid is considered to be air with a Prandtl 
number 0.705. In the following section, it is proposed to 
initiate discussion first on the transient aspects of the 
flow past the cylinder in an unbounded domain and 
thereafter, the effect of the presence of a near-wall 
boundary on the same along with the flow structures will 
be considered for different gap ratios.  

6.1 Vortex Shedding 
     At moderate Reynolds number greater than 
approximately 49 and up to 150 the flow remains 
laminar and two dimensional vortex shedding, also 
known as Karman vortex street occurs. At a Reynolds 
number of 150, typical streamline patterns of the 
unsteady flow for an isolated cylinder in a cross flow for 
a time cycle is shown in fig.4. It is seen that at every  time 
period T, there is a natural shedding.  
 

                           t=0 

        t=1/3 T 

       t=2/3 T 

                           t=T 
 

Fig 4. The vortex shedding in a time cycle for Re =150 
for an isolated cylinder 

 
     Strouhal number which is a measure of the vortex 
shedding frequency is obtained by taking the inverse of  
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the non-dimensional time period. In the present study, 
Strouhal number are deduced from the time-evaluation 
of the average Nusselt number.  
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Fig 5. Strouhal number for an isolated cylinder in the of 

Reynolds number 50-150. 
 
     Fig.5 shows the Strouhal number St for various 
Reynolds number in the range of 50-150. The results are 
compared with the experimental results of Karniadakis 
[7], Williamson [12 ]and Sa and Chang[13]. Good 
agreement is observed between the results. 

 
6.2 Transient Flow Field Development Around A 
       Cylinder Near A Plane Wall 
     For the purpose of discussion a Reynolds number of 
150 has been chosen. This is due to the fact that at still 
lower number i.e. say around 49, the vortex shedding at 
the wake of the cylinder does not occur even for an 
isolated cylinder and a steady state analysis of the flow 
regime appears to be sufficient. The result is obtained for 
G/D=0.5 where G is the gap between the cylinder and 
wall and D is the diameter of the cylinder. A typical 
streamline pattern of the unsteady flow for Reynolds 
number 150 and G/D = 0.5 is shown in fig. 6.   
 

 
Fig 6. The von karman vortex street  for Re=150  & 

G/D=0.5 
 
     Fig. 7 presents the time evaluation of the stream 
function values on the cylinder surface (ψcyl) at different 
gap ratios for the Reynolds number Re=150. It is seen 
that when the cylinder is located far from the wall 
(G/D=1.0), the surface stream function oscillates 
regularly. When the cylinder is moved closer to the wall 
(G/D<1), the amplitude of the surface stream function 
values decreases  gradually, indicating  the  weakness of  
vortex shedding. 
     In fig. 8 variation of local Nusselt number around the 
cylinder surface is shown for different gap ratios for 
Re=150. It is observed that  the local Nusselt number at 
upper  half  of  the cylinder nearly constant  for  all gap 
ratios. The local Nusselt number at  lower  half  of  the 
cylinder  varies as  the  cylinder  comes close to the wall 
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Fig 7. Time evaluation of the cylinder surface stream 
function  at different gap ratios (Re=150). 
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Fig 8. Variation of local Nusselt number around the           
cylinder surface for different gap ratios and Re=150. 

 
     The local Nusselt number (Nuθ) increases in the lower 
half of the cylinder surface  as the gap ratio decreases. 
The influence of lateral wall seems to increase the 
velocity of flow and force it to pass through the gap. The 
increase in velocity results in an increase in heat transfer 
at lower half of the cylinder. The increase in Nusselt 
number is more prominent at angles between 240o to 
320o. 
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Fig 9. Variation of local Nusselt number around the 
cylinder surface for different Re at G/D=0.3. 

 
     Fig. 9 shows the local Nu around the cylinder for 
Re=60,100,150 at G/d=0.3. It is observed that variation 
of local Nu at upper half and lower half of the cylinder 
decrease as the Re decreases. 
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Fig 10. Variation of average nusselt number with 
Reynolds number for different gap-ratios. 

 
     Fig. 10 presents the variation of average Nusselt 
number in the range of Reynold number 20-150  for 
different gap-ratios G/D. It is seen that for the gap-ratio 
of 0.3, average Nusselt number increases prominently 
above Re=100. The  variation Nusselt number almost 
same for G/D=0.8 and G/D=1.0. At this gap ratios  
variation is seen to be less sensitive to the Reynolds 
number.  
     For the gap-ratio of 0.5 and Reynolds number up to 
120, the nusselt number variation is decreased than other 
gap ratios  follows the similar trends to that of the 
gap-ratio for 0 .2. No vortex shedding is observed up to 
this Reynolds number. However, average nusselt number 
is found to increase sharply for Reynolds number greater 
than 100.  
 
7. CONCLUSIONS 
     In this numerical study, heat transfer for 
non-isothermal flow past a circular cylinder in the 
vicinity of a plane wall is considered. An implicit finite 
difference method is used and solution to the 
two-dimensional Navier-Stokes equation and Energy 
equation for  laminar unsteady incompressible viscous 
flows has been obtained. The flow is calculated for 
Reynolds Numbers range from 20 to 150 . Based on the 

numerical solutions , effect of Reynolds Numbers and 
gap ratio  on heat transfer are investigated. 
     The major findings are summarized below. 
a. Heat transfer increases with increase in Reynolds 

number. 
b.   Mean Nusselt number increases with decrease in gap 

ratio. 
c.   As the cylinder moves towards the wall, local  Nusselt 

number at lower half of the cylinder shows higher 
values than that from the upper half. 
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