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ABSTRACT

The standard heat exchanger relations can not be directly applied to matrix heat exchangers, due to factors
such as discontinuous temperature profile along the exchanger length, variation of plate and fluid
temperatures in both axial and radial directions, the heterogeneous wall and the finite number of plates.
Therefore, to predict the performance of these exchangers under given operating conditions, the set of
governing equations has to be integrated and solved simultaneously. In this paper a numerical procedure has
been used to analyze a matrix heat exchanger of circular geometry. The governing equations have been
derived in the cylindrical coordinate system and the resulting set of partial differential equations has been
simplified, using well justified assumptions. The partial differential equations are reduced to a set of
algebraic and ordinary differential equations which are then solved using a standard iterative algorithm.
Using a computer program, the steady state performance of the perforated-plate heat exchanger of circular
geometry has been predicted. The results of the present work have been compared with those of other
researchers.
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1. INTRODUCTION

A matrix heat exchanger (MHE), shown in Fig. 1,
consists of a set of perforated-plates (copper or
aluminum), stacked alternately with an equal number of
spacers (plastics, stainless steel). It is used in low power
cryocoolers and helium liquefiers.

In an MHE, due to the thin (I< 1.0 mm), conducting
plates, the Biot number is less than 0.1 in the axial
direction [1]. Hence, a plate is assumed to be at a uniform
temperature over its thickness, which has been
experimentally confirmed by Kirpikov and Leifman [2].

The plates of an MHE are often considered as fins [1].
However, due to non-uniform fluid temperature, the
standard fin formula is not adequate. In addition,
standard heat exchanger relations can not be applied to
an MHE directly. Therefore, for prediction of
performance of an MHE, the set of governing equations
must be integrated and solved simultaneously.

Venkatarathnam [3] analyzed an MHE of rectangular
cross section. Farhani [4] extended his work to include
MHE:s of circular cross section. The non-uniform flow
channel widths add to the complexity of the analysis.

In this paper, an MHE of circular geometry has been
analyzed numerically. Using a computer program, the
steady state performance of the heat exchanger has been
predicted. The results of the present work have been
compared with those of other researchers.
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Fig 1. A circular matrix heat exchanger (MHE)

2. THE MATHEMATICAL MODEL

An MHE (Fig. 1) of total length L, consisting of n
plates of thickness /, separated by spacers of thickness s
is considered. The characteristic dimension of
perforations is d. The heat transfer direction r is radial,
while the fluid direction Z is axial. In Fig. 2, the warm
stream (stream-1) with circular cross section of radius
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R, , flows through channel-1, while the cold stream
(stream-2) with an annular cross section of radii R,
and R, , Flows through channel-2. The two channels are
separated by a wall of radial width b (= R, — R,) . Positive

Z direction is the direction of flow of stream-1, and
positive r direction is from channel-1 to channel-2.

outer boundary (insulated)

Fig 2. Spacer geometry, showing the relevant radii

The temperature of a plate in channel i is 7; ;. The
fluid in channel-1 enters the jth plate at 7, ;(r) and leaves
itat 4 ;,,(r). Similarly, the fluid in channel-2 enters the
Jth plate at 7, ;,,(r) and leaves it at ¢, ;(r). The fluid

temperature inside a plate is #(r,z) .

2.1 Assumptions
(a) The plates are isothermal in axial direction (z),
(b) Wall temperature profile is linear with radius,
(c) Outermost surface is an insulating boundary.

2.2 Governing Equations
Performing an energy balance over a differential
control volume in the plate (Fig. 3) and using Table 1:

O j1 =71 +exp(=Ny, 1) (01 =71 ;) (1)
‘92,j =T, +exp(—Nm’f,2) (05,11 —Tz,j) (1b)
dzrlj dr ; ll—exp(—Nmfl)J
= == ——\r -0
d’]l d’71 ¢1Ntu,f,l LJ Lj
(2a)
2
d Ty ; 1 drz’j
d?]z2 ny+¢ dmn, (2b)

[1_eXp(_Ntu,f,2)]( p )
T - .
¢2Ntu,f,2 2. 2,j+1

Where,
h = convective heat transfer coefficient,

A" = heat transfer area per unit volume of the plate,
G = fluid mass velocity in the header,
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C, = fluid specific heat at constant pressure,

F = a constant, (+1) for stream-1 and (-1) for stream-2,
and N, ,; = (hA /Gc, ), is N, of one side of a plate.

Fig 3. The differential control volume rd8 dr dz

Table 1: Non-dimensional variables and parameters

t—1t,; v;
g=——2" ; :A—’
tl,in _t2,in i
Tty k,l
- _ Ntu,p,i = P
tl,in tZ,in GCpA ;
¢. — Nru,p,i R,
L Nouri ¢ = Ry - R,

Equations (1a) and (1b) form two sets of n algebraic
equations in ¢, ; ((2<,j<n+1) for stream-1, and

(1< j<n) for stream-2), at any value of the radial
coordinate 77 . The recurrence relation is:

6, =1 and 65501 =0 A3)
Equations (2a) and (2b) are two sets of second-order
ordinary differential equations in z; ; (=1, nand i=1, 2).

The boundary conditions in dimensionless form are:

)
=0 (4a)
dﬂl m=0

dr,
[ 2”} =0 (4b)
dnz =1

The rate of heat transfer between the two streams
through the ith plate is:

drT; .

qi; = _kp(Ar)i d:j ®)

where 4, =27R,/ is the radial heat flow area in
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T
r
channel-1, and at » = R, for channel-2 (see Fig. 3). For

channel-2, and

is computed at r=R, for

the individual channels, Eq. (5) becomes:

dT. .
a.; =k, Rll)( dl’f J (6a)
r r=R,
dT,
g, =—k,(27 RSZ)( d2=«’ j (6b)
r r=R

s

Let us define a dimensionless heat flow rate y; ; as:

B 4i,j
Xij = (4.6C,) (6 —t121) N

4.); =7 Rl2 (channel-1), 7 (R22 - Rsz)(channel-2) is
the free flow area of the ith channel.
Using Eq. (7), Eq. (5) is reduced to the following:

N dr;; 4 N dr; ®)
.. =—0; . =—0. Q. . -
ll,] i tu,p,i d77, i Vi tu,f i d77,

dr;; .
where — is computed at 77, =1 and 7, =0 . o;is

dn;
equal to 2 (channel-1), and 2R, /R, + R, (channel-2).

Defining boundary temperatures 7}, ; = (T

Lj )r:Rl
and T, ; = (T 2,(/) and expressing them in

r=R; ’
dimensionless form we have:

ney =o)L (92)
Tasj = (72,./' ),72:0 (9b)

2.3 Heat Transfer in the Separating Wall

The Fourier conduction equation in cylindrical
coordinates is applicable to the uniform wall separating
the two channels:

0°T. oT. o°T
kw{ “+l S}rku =0 (10)

or* ror oz°

The effective mean thermal conductivities in axial and
radial directions are [5]:

Clk, sk, s+l

T ws Tk

(11)

S,r

s+1

Physically, the plates are nearly isothermal in axial
direction, while the spacers sustain a temperature
gradient. Equation (10), on the other hand, predicts finite
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temperature change over both the elements. Therefore,

we used an alternative approach, which makes the

solution substantially simpler, while enhancing the
overall accuracy [3, 4]. The following assumption is
made in addition to earlier ones:

(d) The average of temperatures on both edges of the
plate is taken as the temperature of the separator at
the corresponding face.

Figure 4a, shows the longitudinal section of an MHE.
Figure 4b shows a control volume and Fig. 4c shows the
temperature profile.

The average heat flux through the wall is given as:

27 k I(R, +Ry)

R R, 7., -7 (12)

q,jt492,; =

An energy balance over the separator portion of the jth
plate (Fig.4b) gives:

q1,; —42,; = 949s,j+1 —4s,j (13)

(Ts,j—l - Ts-,j)

2 2
qs,jzﬂ-(Rs _Rl) ks s

(14a)
where g ; is the heat flow rate into the separator portion

of the jth plate from (j-1)th plate. Using assumption (d),

Tls,j + T2s j

we have T, ; = L The two ends of the

exchanger are insulated:

qs,l =0 and qs,n+l (14b)

Substitutions in Eq. (13) give separator governing
equations as:

Xa,

VAN lij =4, (er,j — T 41 _Ts,j—l> (15a)
for (2Sj£n—1)

Il,l _% = ﬁ“s (Ts,l _15,2) (15b)

ll,n - 1‘2/," = ﬂ“s (Ts,n _Ts,n—l) (150)

Equation (12) is expressed in dimensionless form as:

X2,
1%

X1 + = Zﬂp (Tls,j - TZS,J') (16)

v is the capacity ratio, and 4, and A, are the separator
lateral and axial conduction parameters, respectively. ¥
is a dimensionless geometrical parameters. A, =n A,

where A is the overall axial conduction parameter and n
is the number of plate-spacer pairs [6, 7].
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Fig 4. (a) Longitudinal section of an MHE, (b) Control
volume, (c) Temperature profile in the exchanger

3. SOLUTION OF GOVERNING EQUATIONS

3.1 Simulation of Channel-1

Figure 5, shows the jth plate grid pattern and control
volume. k=0 and k=m+1 are fictitious nodes.

Equations. (1a) and (2a) can now be written as:

Ok = Tiju + A Oy —71,0)0<k<m+1) (17)

7i=0 T 0issre ni=1

X Tigk=1| Tigk | Tigk+1] '
L L] L] L] L] L] L] L] L] L] L] L] !

Tai.:'.l-
k=0 1 2 k1l k k41 m  m+l

Fig. 5.Grid pattern and control volume for the jth plate
with 6,,, =1, and

T1 k=t — 201k T kst 1
An,? (k-1/2)An,

Ty ikl — 01, k-1 (1 -4, )
= Ty — 0 .
( 2Am, J $ Ny s ( Lk T )

where 4, = exp(— Nusa ) Further simplification gives:

Tkt FBITy i + 7271 ks

=Ci0,; (<ksm-1) (18)
where,
T :[%}Uz Z[%} B, =C, -2
¢ -y, p, Al 4
D, Am,
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Boundary Egs. (4a) and (9a) in Finite difference are:

71,0 =714 (202)

Tim+l = 2‘[ls,j “Tjim (ZOb)

Equation (18) for nodes /=1 and A=m is modified as:

Byt ikt jpen =GO Jor k=1 (21a)

and

Ty v Y Br=72)711 4 =C160, i j = 2727
Y171, ) k-1 (B, —72) 1,j.k 191,k V2Tis,j (21b)
for k=m

Equations (18), (21a) and (21b) are combined and
expressed in matrix notation as:

B, 7, 71,j,1
n o Bor 7,72

! (31 —72) T1,j,m
G0,
G,
(22)

C191,j,m - 272T1s,j

The coefficient matrix in Eq. (22) is tridiagonal and
can be inverted using the standard Thomas algorithm [8].

The dimensionless heat flux in channel-1-separating
wall interface is determined from Eq. (8) as:

T1,jm+1 — Tl jm
Ny = —2¢1Nm,f’1 (#j (23)

Substituting Eq. (20b) in Eq. (22) we get:
X1 = 4D, (Tl,j,m - Tls,j) 24

Equations (17) and (22) are the governing equations,
and their solution yields temperature profile in a single
(jth) plate. 6 x (1 <k< m) is known, hence, Eq. (22) is

solved first, yielding 7,,, (1<k <m). These are then,
used in Eq. (17) to calculate the 6, (1<k<m+1).

The process is repeated for all plates, to find the entire
temperature field in channel-1. The heat fluxes in the
plate-separating wall boundary are calculated using Eq.
(24).

3.2 Simulation of the Separating Wall

The sets of Eqgs. (15a), (15b), (15¢) and (16) form the
governing equations of the separating wall, which can be
solved for 7, ; and g, ; forO< j<n, with specified
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7,,; and y,; , or vise versa. Substituting

_ Z-ls,j + Z-ZS,j
s ;T 5

T in Egs. (15a), (15b), (15¢) and

eliminating 7, ; from these equations and Eq. (16):

Xoja+Asxr =B ;5 2<j<n—1 (25a)
I+ A) 121 + X21 + X222 = By (25b)
Xopa +(L+A)xs, =By, (25¢)
where,

A, = 4211—” -2

A
B, = _4V/1p (7151 —Tis2) Hv (14 47p) X1~V 212

S

A
B ;= —4V/1p (2715, =T, j1 T1s, =) TV (2 + 41—%) X1,j

—V X+ 7V X1,
(2<j<n-1)

A
Bs,n = _4V1p (Tls,n - z-ls,n—l) + V(l + 4/1—!7))(1,” - VZl,n—l

)

Equations (25a), (25b) and (25¢) in matrix form are:

(4,+D 1 X2l
1 4, 1 X22
1 (4, +1)) 22
Bs,n
BS,Z
=| . (26)
B,

The coefficient matrix is tridiagonal and the equation can
be solved for y, ;, using Thomas algorithm [8].

3.3 Simulation of Channel-2

Equations (1b) and (2b) and boundary conditions (4b)
and (9b), describe the fluid and plate temperature field in
channel-2. The grid pattern for a plate is shown in shown
in Fig. 5. Equations (1b) and (2b) can be written in finite
difference form as:

Ork =T2 ik 4205 114 — 72 x) (0<k<m+1)(27)

With 02”,”_1’]{ = 0 N and

© ICME2005

(k - 1)+ Ai
n
—2 Ty k-1 T BaTo ji
k=1/2)+—=—
A,
(28)
k+ AL
n
+ —2§ Ty i1 =Cabs i1k
k=-1/2)+—=>—
Ay
R
where 4, =exp(N, ;,) , and ¢ = 5 For
/> R, - R,
interior nodes, Eq. (28) is simplified as:
k+a-1
(29)

k+a
(mj Tz,j,k+1 = Czez,j+l’k fOl" 1 S k S m

where,
N
o A{ : D, = 4 Atu,f,Z :
C, :wAﬂz; B, =C,-2
D,

The boundary conditions for channel-2 are:

T2, jm+1 = T2, im (31a)

X2, = o,D, (72,‘/,0 - 72,‘;',1) (31b)

2R

5, Substituting Egs. (31a) and (31b)
2 TG
in Eq. (29), we the boundary nodes:

where o, =

Nodek =1:

2a 2(1+a)
By +———— |17, ., + T,
( 2 1+2a) 2k {1-1-205} 24+

(32a)
) B 2a X2,j
22k \142a ) 0,D,
Nodek =m:
[ k+a-1 jf " +( k+a ) .
k+a—1/2) 212 N kva—1/2)] > (32b)
= Cz 02,_j+1,k

(20 ) [20+a)]
p‘_(1+2a}p2{1+2a}

| k+ta-1 ) k+a '
p3_(k+a—1/2j’p4_(k+a—l/2j

and expressing Eq. (29), (32a) and (32b) in matrix form
we get:

Defining:
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(By+p1) P 72,51
P3 B, py 72,j.2
P3 (Bz + P4) T2,j.m

X2,)
0,D,

C20, 111 = P

B G,0,, 41,2 (33)

C205 j11m

The coefficient matrix in Eq. (33) is tridiagonal, and
the equation set is solved using Thomas algorithm [8].

Equations (27) and (33) are now the finite difference
governing equations for channel-2. Since the fluid
temperature 6, ., (1<k<m) for the nth plate is

known, Eq. (33) for plate » is solved first, giving 7, ,

(1< k <m). These results are then, used in Eq. (27) to
calculate @, , , (0<k<m+1). The process is repeated

for all plates. Then, the dimensionless temperatures at the
plate-separator interface are calculated as:

X2,

—— 34
20D, G4

Tos,j = T20 7t

3.4. The Solution Algorithm

An algorithm, similar to the one adopted by
Venkatarathnam [3] has been used for simulation of a
matrix heat exchanger of circular geometry,
incorporating the analytical concepts and the finite
difference schemes proposed earlier.

4. RESULTS AND DISCUSSION
A computer program was developed to predict the

performance of an MHE of circular geometry.
The effective- N, (= N, .4 ) is given as [6]:

1 1-ve
N =|—1In 35a
el (l—v) [l—vJ (352)

which for a balanced flow operation (v =1) becomes:

&
Ntu,eﬁ’ :E (35b)

The design- N, (=N, ;) is given by the relation:

-1
Nya = ! + ! +L (36)
Ntu,f,l Ntu,f,2 ﬂ“p
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The inputs to this program are N, 1, Ny, r2,¢1, ¢,
v, A, A, and n. To compare our results with those of

other workers under similar conditions, we defined an

Acl¢1 + Ac2¢2 , which
Acl + ACZ

is a weighted average of the two ¢ values. Calculations

overall conduction parameter, ¢ =

were performed for n =50 and n =100, and for ¢,
ranging from 0.5 to 2.0. The range of N, , was
10< N, , <1000 . The exchanger effectiveness has

been computed as a function of geometrical and process
parameters, and compared with solutions of
Sarangi-Barclay [6], Kroeger [7], and Fleming [10] (see
Figs. 6 through 11).

100

-a--- Kroeger
= = = Modified Fleming
— Sarang-Barclay
— Modibied Sarangi-Barelay

Present work _ L
sl //,/’/—
e -

s = = 4 m=

a8

e >3
LR

o9
sine
Ay

] .;,.1;000

Fig6. N, . Versus N, ,, for various parameters

100

Ntu.dl

107

* ® & 2 ==

s e

Fig7. Ny, . Versus N, ,, for various parameters
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10 100 1000

I N i
e

Ntn.m

r L AR 1A N T i ol § . 5 I S T S
L] ¥ 4 & & 7T hE L] L] « & & Tae

10 100 1000
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Fig9. N, . Versus N, ,, for various parameters

100
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~ — — Modified Fleming e
— — Sarangi-Barclay i
- — Moditied Sarangi-Barclay s —

—— Present work o -

= ® 4 ==
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(R
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A
Y

N S B ]
1000

Fig 10. Ny, . Versus N, ,, for various parameters
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Fig11. Ny, . Versus N, ;, for various parameters

Kroeger’s formulation considers the effect of axial
conduction on the performance of the heat exchanger, but
does not consider the effect of plate conduction and the
discrete nature of the exchanger. Fleming’s approach, on
the other hand, accounts for the effect of plate conduction,
by considering an equivalent fin efficiency that reduces
the effective heat transfer area. However, it ignores axial
conduction effects and the discrete nature of the
exchanger. We have modified Fleming’s model to
include the effect of axial conduction, using Kroeger’s
approach. For the MHE configuration considered, the fin
efficiency can be written as [10]:

-1
m,oR 2
M fn ={1+%} (37)

here, m? =hAﬂ, where / is the heat transfer
P

coefficient, &, is the effective thermal conductivity of

plates in transverse direction, and A" is the heat transfer
area per unit volume of the plate.

Sarangi-Barclay approach considers the effect of
finite number of plates and the axial conduction, but it
ignores the effect of plate conduction. These effects have
been incorporated into the original Sarangi-Barclay
formulation by replacing N, ; with N,, , /A, Thisis
the basis of the modified Sarangi-Barclay approach.

At low N, ,, the Kroeger and modified Fleming
formulations differ by the fin efficiency factor, while at
high N, ,, they approach each other, both being limited
by axial conduction effects (see Figs. 7 through 12). The
results predicted by the present study, lie between the
results of original Sarangi-Barclay and the modified
Sarangi-Barclay formulations, the difference being due
to the fin efficiency effects. The deviation at low N, , is

greater for small values of ¢, as shown in Figs. (7) and
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(8). This is because at small N, the plate temperature

tu,p >
profile has a larger gradient in the radial direction, which
influences the fluid temperature profile. However, at
higher N, , values the present model and that of

Sarangi-Barclay approach each other, and in fact,
coincide at sufficiently high values of N, , .

5. CONCLUSIONS

1. In general, at low Nua the effectiveness is fairly
independent of n and A values, and all models give

acceptable results. At high N’“’d, the effectiveness

is limited by n and A values, instead of Nuwa or ¢.

ifn=<1/4 , n is the controlling factor; otherwise
Ny o 18 determined by 4.

2. The results of present study lie between those
predicted by the original Sarangi-Barclay and the
modified Sarangi-Barclay = formulations, the
difference being due to the fin efficiency effects.

3. The continuum models of Kroeger and Fleming
significantly overestimate the effectiveness of the
MHE, while those of Sarangi-Barclay and the
present numerical model give satisfactory results.

6. REFERENCES

1. Venkatarathnam, G. and Sarangi, S., 1990, “Matrix
Heat Exchangers and their Application in Cryogenic
Systems”, Cryogenics, 30, 907-918.

2. Kirpikov, V.A. and Leifman, L.1., 1972, “Calculation
of Temperature Profile of Perforated Fin”,
Inzhenerno Fizicheskii Zhurnal, 23, 316-321.

3.  Venkatarathnam, G., 1991, “Matrix Heat
Exchangers”, Ph.D. thesis, Indian Institute of
Technology, Kharagpur, India.

© ICME2005

4. Farhani, F., 1997, “Matrix Heat Exchangers for
Cryogenic Applications”, Ph.D. thesis, Indian
Institute of Technology, Kharagpur, India.

5. Babak, T.B., et. al.,, 1985, “Applicability of the
Convective Heat Transfer Equation for Design of
Matrix Heat Exchangers”, Theor. Osno. Khim. Tekh
Khim., Vol. 19, No.4, 488-494.

6. Sarangi, S. and Barclay, J.A., 1984, “An Analysis of
Compact Heat Exchanger Performance”, In ASME,
Cryogenic Process and Equipment-1984, pp. 37-44,
New Orleans, Louisiana.

7. Kroeger, P.G, 1967, “Performance Determination of
High Performance Heat Exchangers, due to Axial
Heat Conduction Effects”, Advances in Cryogenic
Engineering, 12, 363-372.

8. Von Rosenberg, D.U., 1969, Methods for the
Numerical  Solution of Partial Differential
Equations, American Elsevier Publishing Company,
New York.

9. Fleming, R.B., “A Compact perforated plate Heat
Exchanger”, Advances in Cryogenic Engineering,
14, 197-204.

10. Rodriguez, J.I., 1991, “Heat Transfer and Flow
Friction Characteristics of Perforated Plate Heat
Exchangers”, Ph.D. thesis, Mechanical Engineering
Department, University of California, Los Angeles,
USA.

7. MAILING ADDRESS
Dr. F. Farhani
Mechanical Engineering Department,
I.R.O.S.T,, P.O. Box 15815 — 3538, Tehran, Iran
Phone: (009821)88838345
Fax: (009821)88838345
E-mail: ffarhani@yahoo.com

TH-16



