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1. INTRODUCTION 
     A matrix heat exchanger (MHE), shown in Fig. 1, 
consists of a set of perforated-plates (copper or 
aluminum), stacked alternately with an equal number of 
spacers (plastics, stainless steel). It is used in low power 
cryocoolers and helium liquefiers.  
     In an MHE, due to the thin (l< 1.0 mm), conducting 
plates, the Biot number is less than 0.1 in the axial 
direction [1]. Hence, a plate is assumed to be at a uniform 
temperature over its thickness, which has been 
experimentally confirmed by Kirpikov and Leifman [2].  
     The plates of an MHE are often considered as fins [1]. 
However, due to non-uniform fluid temperature, the 
standard fin formula is not adequate. In addition, 
standard heat exchanger relations can not be applied to 
an MHE directly. Therefore, for prediction of 
performance of an MHE, the set of governing equations 
must be integrated and solved simultaneously.  
     Venkatarathnam [3] analyzed an MHE of rectangular 
cross section. Farhani [4] extended his work to include 
MHEs of circular cross section. The non-uniform flow 
channel widths add to the complexity of the analysis. 
     In this paper, an MHE of circular geometry has been 
analyzed numerically. Using a computer program, the 
steady state performance of the heat exchanger has been 
predicted. The results of the present work have been 
compared with those of other researchers. 

 

Fig 1. A circular matrix heat exchanger (MHE) 
 

 
2. THE MATHEMATICAL MODEL 
     An MHE (Fig. 1) of total length L, consisting of n 
plates of thickness l, separated by spacers of thickness s 
is considered. The characteristic dimension of 
perforations is d. The heat transfer direction r is radial, 
while the fluid direction Z is axial. In Fig. 2, the warm 
stream (stream-1) with circular cross section of radius 
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1R , flows through channel-1, while the cold stream 
(stream-2) with an annular cross section of radii sR  
and 2R , Flows through channel-2. The two channels are 
separated by a wall of radial width )( 1RRb s −= . Positive 
Z direction is the direction of flow of stream-1, and 
positive r direction is from channel-1 to channel-2. 
 
 

 
 

Fig 2. Spacer geometry, showing the relevant radii 
 
     The temperature of a plate in channel i is )(, rjiT . The 

fluid in channel-1 enters the jth plate at )(,1 rt j and leaves 

it at )(1,1 rt j+ . Similarly, the fluid in channel-2 enters the 

jth plate at )(1,2 rt j+  and leaves it at )(,2 rt j . The fluid 

temperature inside a plate is ),( zrt . 
 
2.1 Assumptions 

(a) The plates are isothermal in axial direction (z), 
(b) Wall temperature profile is linear with radius, 
(c) Outermost surface is an insulating boundary. 

 
2.2 Governing Equations 
     Performing an energy balance over a differential 
control volume in the plate (Fig. 3) and using Table 1: 
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Where,  
h  = convective heat transfer coefficient, 

'''A = heat transfer area per unit volume of the plate, 
G  = fluid mass velocity in the header, 

pC = fluid specific heat at constant pressure, 
F = a constant, (+1) for stream-1 and (-1) for stream-2, 
and ( )piftu GChAN /'''

,, = , is tuN of one side of a plate. 
 
 

 
 

Fig 3. The differential control volume dzdrrdθ  
 
Table 1: Non-dimensional variables and parameters 
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     Equations (1a) and (1b) form two sets of n algebraic 
equations in ji,θ ( )12( +≤≤ nj  for stream-1, and 

)1( nj ≤≤ for stream-2), at any value of the radial 
coordinateη . The recurrence relation is: 
 

11,1 =θ and 01,2 =+nθ    (3) 
 

     Equations (2a) and (2b) are two sets of second-order 
ordinary differential equations in ji,τ  (j=1, n and i=1, 2). 
The boundary conditions in dimensionless form are: 
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     The rate of heat transfer between the two streams 
through the ith plate is: 
 

( )
dr

dT
Akq ji

irpji
,

, −=    (5) 

 
where lRA sr π2=  is the radial heat flow area in 
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channel-2, and 
dr

dT ji,  is computed at 1Rr =  for 

channel-1, and at sRr =  for channel-2 (see Fig. 3). For 
the individual channels, Eq. (5) becomes: 
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     Let us define a dimensionless heat flow rate ji,χ  as: 
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icA )(  = 2
1Rπ (channel-1), ( )22

2 sRR −π (channel-2) is 
the free flow area of the ith channel. 
     Using Eq. (7), Eq. (5) is reduced to the following:  
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where 
i
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d
d
η
τ ,  is computed at 11 =η  and 02 =η . iσ is 

equal to 2 (channel-1), and ss RRR +22  (channel-2). 
 

     Defining boundary temperatures ( )
1
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and ( )
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=
= ,2,2 , and expressing them in 

dimensionless form  we have: 
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2.3 Heat Transfer in the Separating Wall 
     The Fourier conduction equation in cylindrical 
coordinates is applicable to the uniform wall separating 
the two channels: 
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The effective mean thermal conductivities in axial and 
radial directions are [5]: 
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     Physically, the plates are nearly isothermal in axial 
direction, while the spacers sustain a temperature 
gradient. Equation (10), on the other hand, predicts finite 

temperature change over both the elements. Therefore, 
we used an alternative approach, which makes the 
solution substantially simpler, while enhancing the 
overall accuracy [3, 4]. The following assumption is 
made in addition to earlier ones: 
(d) The average of temperatures on both edges of the 

plate is taken as the temperature of the separator at 
the corresponding face. 

     Figure 4a, shows the longitudinal section of an MHE. 
Figure 4b shows a control volume and Fig. 4c shows the 
temperature profile. 
     The average heat flux through the wall is given as: 
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An energy balance over the separator portion of the jth 
plate (Fig.4b) gives: 
 

jsjsjj qqqq ,1,,2,1 −=− +                  (13) 
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where jsq ,  is the heat flow rate into the separator portion 
of the jth plate from (j-1)th plate. Using assumption (d), 

we have 
2

,2,1
,

jsjs
js

TT
T

+
= . The two ends of the 

exchanger are insulated: 
 

1,1, 0 += nss qandq                (14b) 
 
Substitutions in Eq. (13) give separator governing 
equations as: 
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     Equation (12) is expressed in dimensionless form as: 
 

( )jsjsp
j

j ,2,1
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,1 2 ττλ
ν
χ
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ν is the capacity ratio, and λp  and λs are the separator 
lateral and axial conduction parameters, respectively. Ψ 
is a dimensionless geometrical parameters. λλ ns = , 
where λ  is the overall axial conduction parameter and n 
is the number of plate-spacer pairs [6, 7]. 
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Fig 4. (a) Longitudinal section of an MHE, (b) Control 
volume, (c) Temperature profile in the exchanger 

 
3. SOLUTION OF GOVERNING EQUATIONS 
 
3.1 Simulation of Channel-1 
     Figure 5, shows the jth plate grid pattern and control 
volume. k=0 and k=m+1 are fictitious nodes.  
     Equations. (1a) and (2a) can now be written as: 
 

( )10)( ,,1,,11,,1,1,1 +≤≤−+=+ mkA kjkjkjkj τθτθ  (17) 
 

 
 

Fig. 5.Grid pattern and control volume for the jth plate 
with 1,1,1 =kθ , and 
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where ( )1,,1 exp ftuNA −= . Further simplification gives: 
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    Boundary Eqs. (4a) and (9a) in Finite difference are:  
 

1,,10,,1 jj ττ =                  (20a) 
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     Equation (18) for nodes k=1 and k=m is modified as: 
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Equations (18), (21a) and (21b) are combined and 
expressed in matrix notation as: 
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     The coefficient matrix in Eq. (22) is tridiagonal and 
can be inverted using the standard Thomas algorithm [8]. 
     The dimensionless heat flux in channel-1-separating 
wall interface is determined from Eq. (8) as: 
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Substituting Eq. (20b) in Eq. (22) we get: 
 

( )jsmjj D ,1,,11,1 4 ττχ −=                  (24) 
 

     Equations (17) and (22) are the governing equations, 
and their solution yields temperature profile in a single 
(jth) plate. ( )mkk ≤≤1,1,1θ  is known, hence, Eq. (22) is 
solved first, yielding k,1,1τ  ( mk ≤≤1 ). These are then, 
used in Eq. (17) to calculate the k,2,1θ  ( 11 +≤≤ mk ). 
The process is repeated for all plates, to find the entire 
temperature field in channel-1. The heat fluxes in the 
plate-separating wall boundary are calculated using Eq. 
(24). 
 
3.2 Simulation of the Separating Wall  
     The sets of Eqs. (15a), (15b), (15c) and (16) form the 
governing equations of the separating wall, which can be 
solved for js,2τ  and j,2χ  for nj ≤≤0 , with specified 
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js,1τ  and j,1χ , or vise versa. Substituting 

2
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τ
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=  in Eqs. (15a), (15b), (15c) and 

eliminating js,2τ  from these equations and Eq. (16): 
 

12;,1,21,2 −≤≤=+ +− njBA jsjsj χχ                (25a) 
 

1,2,21,21,2)1( ss BA =+++ χχχ               (25b) 
 

nsnsn BA ,,21,2 )1( =++− χχ                 (25c) 
 
where,  
 

24 −=
s

p
sA

λ
λ

 

 

2,11,12,11,11, )41()(4 χνχ
λ
λ

νττνλ −++−−=
s

p
sspsB  

 

1,11,1

,11,11,1,1, )42()2(4

−+

−+

−−

++−−=

jj

j
s

p
jsjsjspjsB

χνχν

χ
λ
λ

ντττνλ

 ( 12 −≤≤ nj ) 
 

1,1,11,1,1, )41()(4 −− −++−−= nn
s

p
nsnspnsB χνχ

λ
λ

νττνλ  

 
     Equations (25a), (25b) and (25c) in matrix form are: 
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The coefficient matrix is tridiagonal and the equation can 
be solved for j,2χ , using Thomas algorithm [8]. 
 
3.3 Simulation of Channel-2  
     Equations (1b) and (2b) and boundary conditions (4b) 
and (9b), describe the fluid and plate temperature field in 
channel-2. The grid pattern for a plate is shown in shown 
in Fig. 5. Equations (1b) and (2b) can be written in finite 
difference form as: 
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interior nodes, Eq. (28) is simplified as: 
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The boundary conditions for channel-2 are: 
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and expressing Eq. (29), (32a) and (32b) in matrix form 
we get: 
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     The coefficient matrix in Eq. (33) is tridiagonal, and 
the equation set is solved using Thomas algorithm [8]. 
     Equations (27) and (33) are now the finite difference 
governing equations for channel-2. Since the fluid 
temperature kn ,1,2 +θ ( mk ≤≤1 ) for the nth plate is 
known, Eq. (33) for plate n is solved first, giving kn,,2τ  
( mk ≤≤1 ). These results are then, used in Eq. (27) to 
calculate kn,,2θ  ( 10 +≤≤ mk ). The process is repeated 
for all plates. Then, the dimensionless temperatures at the 
plate-separator interface are calculated as:  
 

2

,2
1,,2,2 2 D

j
jjs σ

χ
ττ +=                  (34) 

 
3.4. The Solution Algorithm 
     An algorithm, similar to the one adopted by 
Venkatarathnam [3] has been used for simulation of a 
matrix heat exchanger of circular geometry, 
incorporating the analytical concepts and the finite 
difference schemes proposed earlier.  
 
4. RESULTS AND DISCUSSION 
     A computer program was developed to predict the 
performance of an MHE of circular geometry.  
     The effective- tuN (= efftuN , ) is given as [6]: 
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,efftuN                 (35a) 

 
which for a balanced flow operation ( 1=ν ) becomes: 
 

ε
ε
−

=
1,efftuN                 (35b) 

 
     The design- tuN  (= dtuN , ) is given by the relation: 
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     The inputs to this program are 1,, ftuN , 2,, ftuN , 1φ , 2φ , 

ν , sλ , pλ  and n. To compare our results with those of 
other workers under similar conditions, we defined an 

overall conduction parameter, 
21

2211

cc

cc

AA
AA

+
+

=
φφφ , which 

is a weighted average of the two φ  values. Calculations 
were performed for 50=n  and 100=n , and for φ , 
ranging from 0.5 to 2.0. The range of dtuN ,  was 

100010 , ≤≤ dtuN . The exchanger effectiveness has 
been computed as a function of geometrical and process 
parameters, and compared with solutions of 
Sarangi-Barclay [6], Kroeger [7], and Fleming [10] (see 
Figs. 6 through 11). 
 
 

 
 
 

Fig 6. efftuN ,  Versus dtuN , , for various parameters 
 
 

 
 
 

Fig 7. efftuN ,  Versus dtuN , , for various parameters 
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Fig 8. efftuN ,  Versus dtuN , , for various parameters 

 
 

 
 

Fig 9. efftuN ,  Versus dtuN , , for various parameters 
 
 

 
 

Fig 10. efftuN ,  Versus dtuN , , for various parameters 
 

 
 
 

Fig 11. efftuN ,  Versus dtuN , , for various parameters 
 

     Kroeger’s formulation considers the effect of axial 
conduction on the performance of the heat exchanger, but 
does not consider the effect of plate conduction and the 
discrete nature of the exchanger. Fleming’s approach, on 
the other hand, accounts for the effect of plate conduction, 
by considering an equivalent fin efficiency that reduces 
the effective heat transfer area. However, it ignores axial 
conduction effects and the discrete nature of the 
exchanger. We have modified Fleming’s model to 
include the effect of axial conduction, using Kroeger’s 
approach. For the MHE configuration considered, the fin 
efficiency can be written as [10]: 
 

12
22
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⎢
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+=

Rm
finη                  (37) 

 

here, 
pk

hAhAm
'''

2 = , where h is the heat transfer 

coefficient, pk is the effective thermal conductivity of 

plates in transverse direction, and '''A is the heat transfer 
area per unit volume of the plate. 
     Sarangi-Barclay approach considers the effect of 
finite number of plates and the axial conduction, but it 
ignores the effect of plate conduction. These effects have 
been incorporated into the original Sarangi-Barclay 
formulation by replacing dtuN ,  with findtuN λ/, . This is 
the basis of the modified Sarangi-Barclay approach.  
     At low dtuN , , the Kroeger and modified Fleming 
formulations differ by the fin efficiency factor, while at 
high dtuN , , they approach each other, both being limited 
by axial conduction effects (see Figs. 7 through 12). The 
results predicted by the present study, lie between the 
results of original Sarangi-Barclay and the modified 
Sarangi-Barclay formulations, the difference being due 
to the fin efficiency effects. The deviation at low dtuN ,  is 
greater for small values of φ , as shown in Figs. (7) and 
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(8). This is because at small ptuN , , the plate temperature 
profile has a larger gradient in the radial direction, which 
influences the fluid temperature profile. However, at 
higher dtuN ,  values the present model and that of 
Sarangi-Barclay approach each other, and in fact, 
coincide at sufficiently high values of dtuN , . 
 
5. CONCLUSIONS 

1.   In general, at low dtuN ,  the effectiveness is fairly 
independent of n and λ  values, and all models give 

acceptable results. At high dtuN , , the effectiveness 

is limited by n and λ  values, instead of dtuN ,  or φ . 
If λ/1pn , n is the controlling factor; otherwise 

efftuN ,  is determined by λ . 
2.  The results of present study lie between those 

predicted by the original Sarangi-Barclay and the 
modified Sarangi-Barclay formulations, the 
difference being due to the fin efficiency effects. 

3.  The continuum models of Kroeger and Fleming 
significantly overestimate the effectiveness of the 
MHE, while those of Sarangi-Barclay and the 
present numerical model give satisfactory results. 
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