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1. INTRODUCTION 
      Free convection flow is often encountered in cooling 
of nuclear reactors or in the study of the structure of stars 
and planets. Along with the free convection flow the 
phenomenon of the boundary layer flow of an electrically 
conducting fluid up a vertical flat plate in the presence of 
a strong magnetic field is also very common because of 
its application in nuclear engineering in connection with 
the cooling of reactors. Gebhart [1] has shown that the 
viscous dissipation effect plays an important role in 
natural convection in various devices which are 
subjected to large deceleration or which operate at high 
rotative speeds and also in strong gravitational field 
processes on large scales (on large planets) and in 
geological processes. With this understanding, Takhar 
and Soundalgekar [2] studied the effects of viscous and 
Joule heating on the problem posed by Sparrow and 
Cess[3], using the series expansion method of Gebhart 
[1]. Hossain [4] have studied the effect of viscous and 
Joule heating on the flow of an electrically conducting 
and viscous incompressible fluid past a semi infinite 
plate of which temperature varies linearly with the 
distance from the leading edge and in the presence of 
uniform transverse magnetic field. He has solved the 
equations numerically governing the flow applying the 
finite difference method along with Newton’s 
linearization approximation. Here the viscous dissipation 
effect on the skin friction and the rate of heat transfer in 
the entire region from up stream to down stream of 0a 
viscous incompressible and electrically conducting fluid 

from a vertical flat plate in presence of transverse 
magnetic field will be investigated. 
 
2. GOVERNING EQUATIONS OF THE FLOW 
 The steady two dimensional laminar free convection 
boundary layer flow of a viscous incompressible and 
electrically conducting fluid along a side  of a vertical flat 
plate of thickness ‘b’ in the presence of a uniformly 
distributed transverse magnetic field is considered. The 
flow configuration and the coordinates system are shown 
in Fig. 1 
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    Fig 1. Physical model and coordinate systems. 
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The equations governing the flow are 
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The appropriate boundary conditions to be satisfied by 
the above equations are 
 

00 == vu ,   at  0=y  (3a) 

∞→→ TTu ,0 as ∞→y  (3b) 
 
The temperature and the heat flux are required 
continuous at the interface for the coupled conditions and  
at the interface we must have   
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 where ks and kf are the thermal conductivity of the solid 
and the fluid  respectively.    The temperature Ts in the 
solid as given by  Pozzi and  Lupo [5] is  
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where T(x,0) is the unknown temperature at the interface 
to be determined from the solutions of the equations. 
     We observe that the equations (2) - (3) together with 
the boundary conditions (3) - (5) are non linear partial 
differential equations. In the following the solution 
methods of these equations are discussed. 
 
3. TRANSFORMATION OF THE GOVERNING 
EQUATIONS 
 Equations (2) – (3) may now be nondimensionalized 
by using the following dimensionless dependent and 
independent variables: 
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 Introducing (6) in equations (2) and (3) we get the 
following dimensionless equations. 
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where M = 
2/1
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dimensionless viscous dissipation parameter. 
     The corresponding boundary conditions (3) - (5) take 
the following form: 
 

u=v=0 , θ - 1= p
y∂

∂θ  at  y=0 (9a) 

u→ 0, v→ 0   as y→∞  (9b) 
 
where p is the conjugate conduction parameter given by  
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 Here the coupling parameter 'p' governs the described 
problem. The order of magnitude of ‘p’ depends actually 

on 
L
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 To solve the equations (7) – (8) subject to the 
boundary conditions (9), the following transformations 
are introduced for the flow region starting from up 
stream to down stream. 
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 Here η  is the dimensionless similarity variable and ψ 
is the stream function which satisfies the equation of 

continuity and 
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 Substituting (10) into equations (7) and (8) we get the 
following transformed non-dimensional equations. 
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In the above equations the primes denote differentiation 
with respect toη. 
The boundary conditions (9) then take the following 
form 
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4. METHOD OF SOLUTION 
 To get the solutions of the parabolic differential 
equations (11) and (12) along with the boundary 
condition (13), we shall employ a most practical and 
accurate solution technique, known as implicit finite 
difference method together with Keller- box elimination 
technique. To apply the method, we first discretize the 
equations (11) and (12) along with the boundary 
condition (13) by the simple implicit finite difference 
scheme, similar to that used by Keller and Cebeci [7] to a 
system of non linear algebraic equations. These non 
linear systems of algebraic equations are then linearized 
by means of Newton’s quasi-linearization scheme. The 
system of linear algebraic equations are solved by using 
Keller box method which has been most efficiently by 
Cebeci and Bradshw[8] and very recently by Hossain[4].    
 
5.  RESULTS AND DISCUSSION 
 Here we have investigated the problem of the steady 
two dimensional laminar free convection boundary layer 
flow of a viscous incompressible and electrically 
conducting fluid with viscous dissipation along a side of 
a vertical flat plate of thickness ‘b’ in the presence of a 
uniformly distributed transverse magnetic field. 
Solutions are obtained for the fluid having Prandtl 
number Pr = (0.05, 0.73, 1.0) and for a wide range of the 
values of the viscous dissipation parameter N = (0.01, 0.1, 
0.3, 0.5, 0.6, 0.8, 1.0) and the magnetic parameter M = 
(0.1, 0.2, 0.5, 0.8, 1.0). If we know the values of the 
functions f (η, x), h (η,x) and their derivatives for 
different values of the Prandtl number Pr, the magnetic 
parameter M and the viscous dissipation parameter N, we 
may calculate the numerical values of the surface 
temperature θ (0, x) and the skin friction coefficient         f 
'' (0, x) at the surface that are important from the physical 
point of view. 
 Numerical values of the skin friction coefficient         f 
'' (0, x) and the surface temperature θ (0, x) are depicted 
graphically in Fig. 2 and Fig. 3 respectively against the 
axial distance x in the interval [0, 30] for different values 
of the viscous dissipation parameter N (= 0.3, 0.6, 0.8, 

1.0) for the fluid having Prandtl number Pr = 0.73 and 
the magnetic parameter M=1.0. From Fig. 2, it can be 
observed that increase in the value of the viscous 
dissipation parameter N leads to increase the value of the 
shear stress coefficient   f '' (0,x) which is usually 
expected. Again Fig. 3 shows that the increase of the 
viscous dissipation Parameter N leads to increase the 
surface temperature θ (0, x). In Fig. 4 and Fig. 5, the 
shear stress coefficient f '' (0, x) and the surface 
temperature θ (0, x) are shown graphically for different 
values of the Prandtl number Pr (= 0.05, 0.73, 1.0) when 
value of the magnetic parameter M is 0.1 and the viscous 
dissipation parameter N = 0.01. The values of the Prandtl 
number Pr are taken to be 0.05 that corresponds 
physically the sodium, 0.73 that corresponds the air and 
1.0 corresponding to electrolyte solutions such as salt 
water. From Fig. 4, it is shown that the shear stress 
coefficient f '' (0, x) decreases with the increase of the 
Prandtl number Pr ( = 0.05 , 0.73 , 1.0 ) and from the 
Fig. 5,  the same result is observed on the surface 
temperature distribution due to increase of the value of 
the Prandtl number.  Similar results are observed from 
Fig. 6 and Fig. 7 for skin friction f '' (0,x) and surface 
temperature distribution θ(0, x) respectively for different 
values of the magnetic M when Prandtl number Pr = 0.73 
and viscous dissipation parameter 
 N = 0.5. Fig. 8 and Fig. 9 deal with the effect of the 
viscous dissipation parameter N (= 0.1, 0.5, 0.8, 1.0) for 
Pr = 0.73 and for the magnetic parameter M = 1.0 on the 
velocity profile f '(η ,x) and the temperature profile   
 θ (η, x) . From Fig. 8, it is revealed that the velocity 
profile f '(η,x) increases slowly with the increase of the 
viscous dissipation  parameter N which indicates that 
viscous  dissipation accelerates the fluid motion. Small 
increment is shown from Fig. 9 on the temperature 
profile θ(η,x) for increasing values of N. Fig. 10 depicts 
the velocity profile for different values of the Prandtl 
number Pr (= 0.05, 0.73, 1.0) while the magnetic 
parameter M is 0.1 and the viscous dissipation parameter 
N = 0.01. Corresponding distribution of the temperature 
profile θ (η, x) is shown in Fig. 11. From Fig. 10, it can be 
seen that if the Prandtl number increases, the velocity of 
the fluid decreases. On the other hand, from Fig. 11 it is 
observed that the temperature profile decreases within 
the boundary layer due to increase of the Prandtl number 
Pr. From Fig. 12 we observe that the velocity profiles 
decrease with the increase of the magnetic parameter M 
when the values of the Prandtl number Pr and the 
dissipation parameter N are respectively 0.73 and 0.5. 
Opposite result is shown in Fig. 13 for temperature 
distribution for the same values of the magnetic 
parameter M. 
 
6.  CONCLUSIONS 
 The effects of viscous dissipation and magnetic 
parameters N and M respectively for small Prandtl 
number Pr ( = 0.05, 0.73, 1.0 ) on the magneto 
hydrodynamic (MHD) natural convection boundary 
layer flow with viscous dissipation from a vertical flat 
plate has been studied introducing a suitable 
transformations. The transformed non similar boundary 
layer equations governing the flow together with the 
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boundary conditions based on conduction and 
convection were solved numerically using the implicit 
finite difference method together with Keller box scheme. 
The coupled effect of natural convection and conduction 
requires that the temperature and the heat flux be 
continuous at the interface.   
From the present investigation, the following 
conclusions may be drawn: 

1. The skin friction coefficient and the velocity 
distribution increase for increasing value of the 
viscous dissipation parameter N. 

 2. Increased value of the viscous dissipation 
parameter N leads to increase the surface 
temperature distribution as well as the temperature 
distribution. 

3. The skin friction coefficient, the surface temperature 
distribution, the temperature distribution over the 
whole boundary layer and the velocity distribution 
decrease with the increase of the Prandtl number Pr. 

4. The skin friction coefficient, the surface temperature 
distribution and the velocity profile decrease and the 
temperature profile increases for the increased 
values of the magnetic parameter M. 
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Fig 2. Skin frictions for different values of N      

when number Pr = 0.73 and M = 1.0 
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Fig 4. Skin frictions for different values of Pr 

when M = 0.1 and N = 0.01 
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 Fig 5. Surface temperature distribution for different 
values of Pr when M =0.1and N = 0.01 
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Fig 6. Skin frictions for different values of M         

when Pr = 0.73 and N = 0.5 
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Fig 7. Surface temperature distribution for different 

values of M when Pr =0.73 and N =0.5 
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8. NOMENCLATURE 

 
symbol Meaning  Unit 

b Plate thickness (cm) 
Cp Specific heat (J/KgK) 
D (Tb - T∞ ) / T∞ (-) 
f Dimensionless stream 

function 
        (-) 

g Acceleration due to gravity (cm/s2) 
h Dimensionless temperature (-) 

H0 Applied magnetic field (-) 
L Reference length, 3/13/2 / gν  (cm) 
l  Length of the plate (cm) 

M Magnetic parameter (-) 
N Viscous dissipation 

parameter 
(-) 

p Coupling parameter (-) 
Pr Prandtl number (-) 
T Temperature of the flow 

fluid 
(K) 

Tb Temperature at outside of 
the plate 

(K) 

Ts Solid temperature (K) 
T∞ Temperature of the ambient 

fluid 
(K) 

u Velocity component in the 
x-direction 

(cm/s) 

v Velocity component in the 
y-direction 

(cm/s) 

x Stream wise co-ordinate (cm) 
y Transverse co-ordinate (cm) 
   

       Greek symbols  
   

β Co-efficient of thermal 
expansion 

(-) 

ψ  Stream function  (-) 
η  Dimensionless similarity 

variable 
      (-) 

ρ  Density of the fluid inside 
the boundary layer    

(kg/m3) 

ν  Kinematic viscosity  (m2/s) 
µ  Viscosity of the fluid  (N.s/m2) 
θ  Dimensionless temperature       (-) 
σ  Electrical conductivity (W/m2.K-4) 
Κf  Thermal conductivity of the 

  ambient fluid 
(kW/mK) 

Κs  Thermal conductivity of the 
  ambient solid 

(kW/mK) 

 


