
Proceedings of the 
International Conference on Mechanical Engineering 2007 

(ICME2007) 29- 31 December 2007, Dhaka, Bangladesh 
 

ICME07-AM-56 

© ICME2007 1   AM-56 

 
 
 
 

 

 
1. INTRODUCTION 
     Simplified model of a rotor blade can be presented by 
a rotating clamped-free beam of non uniform cross 
section under centrifugal loading. This model can be 
made closer to the real system by providing an offset 
between the axis of rotation and initiation of the beam at 
the fixed end. Dynamic analysis of such mechanical 
component using clamped-free non uniform rotating 
beam model is an interesting area of research. It is well 
known that a non-linear analysis is necessary to predict 
the dynamic behavior of beams subjected to large 
displacement. For large displacement free vibration 
analysis of a beam, the non- linear natural frequencies 
differ significantly from their linear counterpart due to 
the effect of stretching of the middle plane. So, prediction 
of large amplitude vibration frequencies of rotating 
beams has got significant importance in practical 
applications. 
     Marur [1] presented an excellent review work for the 
development of non-linear vibration formulations of 
beams. Since exact solution of the governing differential 
equation of rotating beam vibration can not be obtained, 
various researchers have used different approximate 
methods for the analysis of such problem. Yokoyama [2] 
used finite element technique to study the out-of-plane 
free vibration behavior of rotating beams. He derived 
governing equations by applying Hamilton’s principle 
and incorporated shear deformation and rotary inertia in 
the mathematical model. Udupa and Varadan [3] used 
hierarchical finite element method for the same purpose. 
Dynamic stiffness method and Frobenius method of 
series solution of differential equations had been used by 
Banerjee [4] to simulate the free vibration characteristics 

of Bernoulli-Euler beam. Using this method, he studied 
the dynamic behavior of rotating non-uniform beam by 
considering it as an assemblage of several uniform beams. 
He extended the same methodology for the free vibration 
analysis of Timoshenko beams [5]. Chakraborty et al. [6] 
developed a new finite element for rotating beam made 
of functionally graded material. The shape functions 
used to construct the proposed finite element are not only 
functions of length but also, they are functions of the 
beam length and element location across the beam. Wang 
and Wereley [7] proposed a spectral finite element 
method (SFEM) to develop a low-degree-of-freedom 
model for dynamic analysis of rotating tapered beams. 
The method uses semi-analytical progressive wave 
solutions of the governing partial differential equations 
and requires only one single spectral finite element to 
obtain any modal frequency or mode shape. Gunda and 
Ganguli [8] proposed a new rotating beam finite element 
in which the interpolating shape functions are functions 
of rotational speed and element position along the beam 
and account for the centrifugal stiffening effect. 
Chandiramani et al. [9] studied the free and forced 
vibration behavior of pre-twisted rotating composite 
blade using extended Galerkin Method. The effect of 
angular velocity and the magnitude and point of 
application of transverse concentrated load on the 
non-linear dynamic behavior of uniform rotating beam 
had been studied by Rout et al. [10].  
     Literature review reveals that dynamic analysis of 
rotating beam by approximate variational method is 
scarce. The present study employs an energy formulation 
where, the unknown displacement field is approximated 
as a finite linear combination of undetermined 

 
ABSTRACT      
The paper aims at presenting an approximate solution for large displacement free vibration problem of a 
linearly tapered rotating beam. The method employed requires the static solution of displacement field of 
the beam first and then the dynamic problem is formulated as an eigen value problem using the static 
solution. The method is based on energy formulation and applies minimum potential energy principle for 
the static problem and Hamilton’s principle for the dynamic problem. The displacement field is 
approximated by a series of linear combination of undetermined parameters and admissible orthogonal 
coordinate functions. The coordinate functions are generated using Gram Schmidt scheme. The method is 
validated successfully with the available results and some new results are presented. 
 
Keywords: Rotating Beam, Centrifugal Stiffening, Large Displacement. 

LARGE DISPLACEMENT FREE VIBRATION ANALYSIS OF 
ROTATING BEAM 

 
 

Debabrata Das1, Prasanta Sahoo2 and Kashi Nath Saha3 

 
Department of Mechanical Engineering, Jadavpur University, Kolkata – 700032, India. 

1debu235@yahoo.co.in, 2psjume@gmail.com, 3kashinathsaha@gmail.com 
 
 



© ICME2007  AM-56 2

parameters with appropriately chosen admissible 
coordinate functions and the governing equations are 
obtained by applying variational principle.  

 
2. MATHEMATICAL FORMULATION 
     The mathematical formulation is based on the 
assumption that the beam material is isotropic and 
homogeneous and follows linear elastic material 
behavior. The stress and strain measures are based on 
initial dimensions of the beam. The beam is of 
rectangular cross section having constant width and 
linearly varying thickness. Also, the beam has very small 
thickness when compared to its length, hence, the effect 
of shear deformation and rotary inertia is neglected. Fig. 
1 shows two views of a tapered beam having length L, 
width b and root thickness hr and free end thickness hf. 
The linear thickness variation is given by,  
( ) ( )1rh hξ βξ= −                                       (1) 

where, ( ) /x R Lξ = −  is the normalized axial coordinate, 
R  is the offset distance of the root of the beam from the 
axis of rotation and x is the axial coordinate and β  is the 
parameter defining the geometry of taperness of the 
beam given by ( )1 /r fh h− . It should be noted that the 
effect of non-uniformity at the root of the beam has been 
neglected. It is to be noted further that the computation is 
carried out in normalized coordinateξ . 

 
 

Fig 1: Projection views of a tapered beam. 
 
     The present formulation for the dynamic problem is 
based on displacement field which is obtained from an 
analysis of the beam under centrifugal loading. Using 
that static displacement field, the subsequent dynamic 
problem is formulated in terms of an eigen value 
problem. 
 
2.1 Static Analysis 
     For static problem, the governing set of equations is 
obtained by the application of minimum potential energy 
principle which states that 
( ) ( ) 0U Vδ π δ= + =                                   (2) 

where, π  is total potential energy of the system, U  and  
V  are the strain energy and work potential of the system 
and δ  is the variational operator.  

     In case of large displacement analysis of beams, the 
axial displacement of any fibre is contributed by both 
bending action and stretching of midplane. The axial 
strain of a fibre at a distance z from midplane due to 

bending action is given by 
2

2
b
x

d wz
dx

ε = −  and axial strain 

due to stretching of midplane is given by, 
21

2
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  where, w and u denote transverse 

and in-plane displacements of midplane respectively. 
The expression for strain energy is given by, 
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where, E is the elastic modulus of beam material.  
     In arriving at Eq. (3), the following properties of beam 
cross section has been considered 
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where, ( )I x  and ( )A x  are second moment of area and 
cross sectional area of beam respectively. The work 
potential V of centrifugal force is given by, 

( )2
L R

R

V b h x xudxρ
+

= Ω ∫                                      (4) 

where, Ω  is the angular speed of rotation and ρ  is 
density of beam material. The static displacements 
( )w ξ  and ( )u ξ  are assumed as linear combinations of 

orthogonal functions formed by undetermined 
parameters as follows: 
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i i
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w dξ φ ξ
=
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i i nw
i nw

u dξ α ξ
+
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= ∑            (5) 

     In (5), iφ  and iα  denote the set of orthogonal 
coordinate functions for w and u respectively and id  
represent undetermined parameters. The necessary start 
functions for w and u are selected to satisfy the necessary 
geometric boundary conditions of the beam and the 
higher order functions are generated from the start 
functions using Gram-Schmidt orthogonalization 
scheme. For selection of suitable start functions, results 
presented by Blevins [11] have been referred.  



© ICME2007  AM-56 3

     Using Eqs. (3), (4) and (5), Eq.(1) yields the 
governing set of equations for the static problem which is 
given by, 
[ ]{ } { }K d f=                                                   

(6)  where, [ ] 11 12
21 22

k kK k k
⎡ ⎤= ⎢ ⎥⎣ ⎦

and { } { }11
12

ff f=  are stiffness 

matrix and load vector respectively which are of the form 
given below: 
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     Eq. (6) is non-linear in nature due to the presence of 
coupling terms and is solved by direct substitution 
method with relaxation parameter [12]. The effect of 
large transverse displacement coming from transverse 
loading has not been considered in this paper. 
 
2.2 Dynamic Analysis 
     The governing set of equations for the dynamic 
problem is obtained applying Hamilton’s principle which 
is given by, 

( )
2

1

0
t

t

T U V dtδ
⎛ ⎞
⎜ ⎟− − =
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⎝ ⎠
∫                                               (7) 

where, T, U and V are kinetic energy, strain energy and 
work potential of external forces respectively. The 
expressions for U and V are given by Eqs. (3) and (4) 
respectively. 

The expression for kinetic energy is given by,  
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(8) 
     The dynamic displacements ( ),w tξ  and ( ),u tξ  are 
assumed to be separable in space and time as shown 
below: 
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     Here, id  represent a new set of undetermined 

parameters to be evaluated. The space functions are 
completely known from the static analysis and the set of 
temporal functions is expressed by i te ω , where, ω 
represents the natural frequency of the system and 

1i = − . Using these dynamic displacement fields and 
putting Eqs. (3), (4) (8) and (9) in Eq. (7), the governing 
equation of the dynamic problem can be written in the 
following form 
[ ]{ } [ ]{ }2 0K d M dω− =                                 (10) 

where, [ ]M  is the mass matrix which is of the form 

given as [ ] 11 12
21 22

M MM M M
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 the elements of which are 

given by, 
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     Eq. (10) can be transformed to a standard eigen value 
problem by suitable rearrangement which is solved 
numerically for calculating the natural frequencies by 
using IMSL routines. 

 
3. RESULTS AND DISCUSSIONS 
 

Table 1: Validation of non-dimensional natural 
frequencies for uniform cantilever beam 

 
Present By [8] Mode 

λ =0 
1 3.4896 3.5160 
2 22.0065 22.0345 
3 61.5792 61.6972 
4 120.5291 120.902 
5 198.7345 199.862 

Mode λ =12  
1 13.1568 13.1702 
2 37.5738 37.6032 
3 79.4874 79.6146 
4 140.1774 140.535 
5 219.4218 220.539 

 
Table 2: Validation of non-dimensional natural 

frequencies for tapered cantilever beam 
 

Present By [8] λ  
Mode 1 

0 3.8216 3.8239 
1 3.9755 3.9866 
2 4.4329 4.4368 
3 5.0782 5.0927 
4 5.8707 5.8788 
5 6.7336 6.7434 
6 7.6479 7.6551 
7 8.5853 8.5956 
8 9.5479 9.5540 
9 10.5121 10.5239 
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10 11.4905 11.5016 
11 12.4701 12.4845 
12 13.4617 13.4711 
λ  Mode 2 
0 18.2874 18.3173 
1 18.4445 18.4740 
2 18.9030 18.9366 
3 19.6543 19.6839 
4 20.6549 20.6852 
5 21.8743 21.9053 
6 23.2728 23.3093 
7 24.8322 24.8647 
8 26.5127 26.5437 
9 28.2922 28.3227 

10 30.1466 30.1828 
11 32.0736 32.1086 
12 34.0499 34.0877 
λ  Mode 3 
0 47.1639 47.2649 
1 47.3171 47.4173 
2 47.7727 47.8717 
3 48.5188 48.6190 
4 49.5457 49.6457 
5 50.8360 50.9339 
6 52.3672 52.4633 
7 54.1145 54.2125 
8 56.0633 56.1596 
9 58.1869 58.2834 

10 60.4993 60.5640 
11 62.8880 62.9830 
12 65.4279 65.5238 

 
     The results are generated using L=1.0 m, b=0.02 m, 
hr=0.01 m, E=210 GPa and ρ =7850 Kg/m3. The value 
of β  is taken as 0.5 unless otherwise stated. 

Non-dimensional load λ  is given by, 4 /L EIρΩ  

where, ρ  is the mass per unit length at the root section 

and  non-dimensional vibration frequency ω  is given by 
4 /L EIω ρ . The validation of the first five natural 

frequencies for static condition ( 0λ = ) as well as with 
centrifugal stiffening effect ( 12λ = ) has been carried out 
with [8] for uniform cantilever beam ( )0β =  and it is 
tabulated in Table 1. The same for tapered cantilever 
beam has been shown in Table 2. Both the tables show 
excellent agreement, thus establishing the validity of the 
present method. 
     To visualize the effect of centrifugal stiffening on the 
amplitude of vibration, Fig. 2 has been presented which 
shows the mode shape plots for first four modes of a 
rotating beam with β =0.5 and R/L=0.0 both for λ =0 
and λ =12. This figure clearly indicates the difference in 
vibration amplitude due to the effect of centrifugal 
stiffening. It is also indicative of the fact that effect of 
centrifugal stiffening is maximum on the first mode and 
gradually diminishes towards the higher modes.   
     The variation of non-dimensional out-of-plane 
vibration frequencies with non-dimensional speed of 

rotation for different R/L ratios has been shown in Figs. 
3(a-e) for the first five modes respectively. Fig. 3 clearly 
shows the obvious fact that with increase in speed of 
rotation, natural frequencies increase monotonically due 
to the effect of centrifugal stiffening. It is clear from Fig. 
3 that there is no effect of offset distance on the natural 
frequencies of non-rotating beam, but, for a rotating 
beam, the natural frequencies increase with increase in 
offset distance for any particular speed of rotation. In this 
particular study, the value of (R+L) is not kept fixed.  
     The effect of taper parameter β  on the dynamic 
behavior of tapered rotating beam has been shown in 
Figs. 4(a-e) for first five modes respectively, in 
dimensionless load-frequency plane. For generating Figs. 
4, the value of R/L is taken as 0.0 and the values of β  are 
taken as 0.1, 0.2, 0.3 and 0.4. It is clear from Fig. 4(a) that 
there is no effect of β  on the first natural frequency of 
rotating beam. But Figs. 4(b-e) show that with increase in 
the value of β , the natural frequencies of next higher 
modes decrease both for non-rotating as well as rotating 
beams. It can also be seen that the extent of decrease in 
vibration frequencies increases with increase in mode 
number. 
 

 
 

Fig 2: Effect of centrifugal stiffening on amplitude of 
vibration for first four modes. 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 
(e) 

Fig 3: Effect of offset distance on the natural frequencies 
of tapered cantilever beam for (a) Mode 1, (b) Mode 2, 

(c) Mode 3, (d) Mode 4 and (e) Mode 5. 
 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Fig 4: Effect of taper parameter β on the natural 
frequencies of tapered cantilever beam for (a) Mode 1, 
(b) Mode 2, (c) Mode 3, (d) Mode 4 and (e) Mode 5. 

 
4. CONCLUSIONS 
     The present work provides a variational approach 
towards an approximate solution of the free vibration 

analysis of a tapered rotating beam. The method is 
validated successfully with benchmark solutions. The 
variation of the dynamic behavior of a rotating beam 
with increase in the offset distance between the axis of 
rotation and the root section has been shown in 
dimensionless load-frequency plane. The effect of taper 
parameter on the same has also been shown. Mode shape 
plots are presented to show the effect of centrifugal 
stiffening on the vibration amplitude. This method of 
analysis can be extended for other different types of 
non-uniform tapered rotating beams.   
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6. NOMENCLATURE 
 

Symbol Meaning Unit 
 b 
{d} 
E 
{f} 
h(x) 
hr 
hf 
I(x) 
A(x) 
[K] 
L 
[M] 
nw 
Nu 
R 
 t 
T 
 u 
U 
V 
w 
 x 
 z 
 ω 
ω  
 Ω 
 λ 
π  
β  
φ  
 α 
ξ  
ρ  
ρ  
δ  
 εx 

Width of beam 
Unknown coefficient vector 
Elastic modulus  
Load vector 
Height of beam section  
Beam height at root section 
Beam height at free end  
Second moment of area   
Cross sectional area  
Stiffness matrix 
Length of beam 
Mass matrix 
Number of functions for w 
Number of functions for u 
Offset distance 
Time  
Kinetic energy 
In-plane displacement 
Strain energy 
Work potential 
Transverse displacement 
Axial coordinate 
Transverse coordinate 
Frequency of vibration 
Non-dimensional frequency 
Rotational speed  
Non-dimensional load 
Total potential energy 
Taper parameter  
Dimensionless function for w 
Dimensionless function for u 
Dimensionless coordinate 
Density  
Mass per unit length 
Variational operator 
Axial strain (dimensionless) 

(m) 
(m) 
(Pa) 
(N) 
(m) 
(m) 
(m) 
(m4) 
(m2) 
(N/m) 
m 
Kg 
-  
- 
(m) 
(s) 
(N-m) 
(m) 
(N-m) 
(N-m) 
(m) 
(m) 
(m) 
(rad/s) 
- 
(rad/s) 
- 
(N-m) 
- 
- 
- 
- 
(Kg/m3) 
(Kg/m) 
- 
- 

 
 
 

 


