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1. INTRODUCTION 
     Composite materials are widely used in aerospace, 
automobile, sports equipment, structural equipments and 
many other applications due to their superiorities like 
high strength weight ratio over monolithic materials. In 
many structural applications, holes of various shapes are 
made to meet the design requirements. The presence of 
holes in the components will create stress concentrations, 
which will reduce the mechanical strength of them. 
Therefore, it is of great importance to investigate state of 
stress around the hole in a composite lamina. For 
complex boundary shapes and difficulties in the 
management of boundary conditions of practical 
problems, analytical solutions become hard to achieve. 
Experimental methods sometimes become costly and 
time consuming. So the help of numerical techniques can 
be sought to solve these problems. Among various 
numerical techniques, finite difference method is being 
used by many researchers in their works over the years. 
Stress function [1] can be used for the solution of the 
two-dimensional elastic problems. However, problems 
containing boundary conditions in terms of restraints can 
not be discretized by the stress function formulation. 
Uddin, M. W. [2] proposed a formulation for the solution 
of two-dimensional mixed boundary value problems 
using the displacement potential function. Later many 
researchers focused their attention on the displacement 
potential function formulation and successfully applied 
for the solution of many two-dimensional elastic mixed 
boundary value problems [3-8]. However, these are 
limited to the isotropic material only. Nath, S. K. D. [9] 
proposed a new mathematical model to solve the 

problems of unidirectional orthotropic materials. Beside 
this, many researchers used analytical [10-11], 
experimental [12-13] and finite element method [14] to 
solve elastic problems of composite material with holes. 
The aim of this paper is to solve two-dimensional mixed 
boundary value problems of rectangular orthotropic 
structure with a centrally located circular hole using 
finite difference method based on displacement potential 
function. 
  
2. MATHEMATICAL MODEL 
  
2.1 Governing Equation 
    In order to provide the complete idea about the states 
of stresses, strains and displacements in a three 
dimensional body it is necessary to determine the six 
components of stress (σxx , σyy , σzz , σxy , σyz  and σzx), six 
components of strain (εx , εy , εz , γxy , γyz and γzx). 
Sometimes displacement components (ux, uy and uz) are 
evaluated instead of strain components. A unidirectional 
lamina falls under the orthotropic material category. If 
the lamina is thin and does not carry any out-of-plane 
loads, plane stress conditions can be assumed for the 
lamina. And the stress-strain relations [15] can be written 
by, 
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where, Sij are called the compliance matrix constants and 
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values of these constants are 
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Again for the static equilibrium of the lamina, there are 
two equations of equilibrium (Eq. 2 and 3) and a 
compatible equation (Eq. 4) which must be satisfied at all 
points throughout the volume of the body.  
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By using the relations from Eq. 1 this compatibility 
equation (Eq. 4) can be expressed in terms of stress 
components as, 
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Substituting the stress components in the Eqs. 2, 3 and 5 
by the displacement components (ux and uy) it is found 
that Eq. 5 is surplus and the Eqs. 2 and 3 become 
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Although these two equations are sufficient for the 
solution, it is still difficult to solve for two functions 
simultaneously. This difficulty can be overcome if these 
two equations can be transformed into a single equation 
of a single function. So to reduce the number of 
governing differential equations, in a single equation, a 
new function called displacement potential function (ψ) 
is defined as a function of displacement components 
as[9],  
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where, ( )2
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definitions of ψ(x, y), the first of the two equilibrium 
equations (Eq. 6) is automatically satisfied. Therefore, 
ψ(x, y) has to satisfy the second equation (Eq. 7). This 
second equation in terms of ψ(x, y) can be expressed as 
[9], 
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Therefore, the problem is reduced to the evaluation of a 
single variable ψ(x, y) from the bi-harmonic partial 
differential equation (Eq. 10) and this equation is the 
only governing equation, in this approach, for the 
solution of two-dimensional unidirectional composite 
lamina. 
 
2.2 Boundary Conditions 
To analyze the state of stress in two-dimensional 
arbitrary shaped body, the normal and tangential 
components of displacement and stress should be 
evaluated in terms of ψ(x, y). The normal and tangential 
components of displacement can be found easily by 
simple manipulation of the Eq. 8 and 9 as follows, 
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Similarly, the normal and tangential components of stress 
can be written as the following form  
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Now all possible boundary conditions (un, ut, σn and σt) 
are evaluated in terms of ψ(x, y). So in the region of 
study the governing differential equation (Eq. 10) should 
be applied at all node points except the boundary node 
points and boundary conditions (Eq. 11 to 14) should be 
applied at boundary node points. 
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2.3 Description of the Configuration 
    A rectangular composite lamina with a centrally 
located circular hole under uniform tensile loading is 
shown in the Fig. 1 where b/a=2, r/a=0.50 and 
x-direction is considered as the fiber direction. 
Considering the symmetry of the configuration, one 
quarter (top-right) of the lamina is chosen for the study, 
as shown in Fig. 2. The material considered for the 
lamina is boron reinforced epoxy matrix (Boron/ Epoxy) 
composite. The properties of the material are taken as, 
Ex=204 GPa, Ey=18.5 GPa, Gxy=5.59 GPa, µxy=0.23. 
And the boundary conditions required for the problem 
are shown in the Fig. 3, where σx

o = 2.4×106 N/m2. 
 
 

  

 

 
 
3. SOLUTION PROCEDURE 
     For the finite difference solution, the whole region is 
divided into meshes with lines parallel to the rectangular 
co-ordinate axes, which results in a finite number of node 
points. Finite Difference form of the governing equation 
is applied to the inner node points and boundary 
conditions are then applied to the boundary node points. 

But difficulties arises incase of boundary node points. 
Firstly for curved or irregular boundary, boundary points 
may not coincide with the field grid points and secondly 
each boundary node point has to satisfy at least two 
boundary conditions. To overcome second problem a 
boundary near the physical boundary is assumed to exist 
which is named as imaginary boundary. Each physical 
node point has to be provided with an imaginary node 
point and it will be the immediate outward field grid 
point, e.g. for a node point at the outer top boundary the 
imaginary boundary point will be the immediate top field 
grid point. To solve the first problem a new boundary is 
incorporated which is called reference boundary [10]. If 
any physical hole boundary point matches with the 
rectangular field grid point, then the point itself will act 
as the reference boundary point. When the physical hole 
boundary point does not match with the rectangular grid 
point then the nearest grid point will be the reference 
boundary point of that physical boundary point. By this 
the actual or physical boundary is transformed into the 
reference boundary which gives a new region and will be 
the region under consideration. For the curved surface in 
the hole region the physical, reference and imaginary 
boundary node points are shown in the Fig. 4. 
 

  
 
So when finite difference equations are applied to the 
node points of the whole region, it gives a set of linear 
algebraic equations equal to the number of total node 
points in the region. In these equations only unknowns 
are the ψ’s. Here L-U decomposition method is used to 
solve the set of equations and hence value of ψ at each 
node point is found. Once values of ψ’s are evaluated the 
stress and displacement components at each point can be 
found from the finite difference form of the equations 
(Eq. 11 to 14) presented before.  
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Fig 3: Boundary conditions applied in the 
problem 
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Fig 1: Geometry of the actual problem 
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4. RESULTS AND DISCUSSION 
 

4.1 Distribution of Displacement 
     Distribution of the normalized longitudinal 
displacement (ux/a) with respect to y-axis (y/a) at 
different vertical sections of the body is illustrated in Fig. 
5. At the left edge (x/b=0.0), midsection of the hole, the 
normalized longitudinal displacement is found to be zero, 
which confirms the applied boundary condition. And it is 
observed that displacement increases gradually in the 
positive x direction for a particular horizontal section and 
all points of the body tends to move towards right due to 
the applied load. For any vertical section, the trend of the 
distribution shows the presence of a hole in the lamina. 
Maximum displacement is found at the bottom (y/a=0.0) 
of the extreme right section (x/b=1.0). Fig. 6 shows the 
distribution of the normalized transverse displacement 
(uy/a) with respect to y-axis (y/a) at different vertical 
sections of the lamina. For the vertical sections from 
x/b=0.0 to 0.5 the magnitude of the transverse 
displacement is negative and for the other two sections 
(x/b=.75 and 1.0) it is positive. Positive value means 
displacement along positive y-direction and negative 
value means displacement along negative y direction. 
Therefore signs of the displacement suggest that from 
left to almost middle section, all points tend to move in 
downward direction and after mid-section all points tend 
to move in upward direction. It is also observed that at 
the bottom edge (y/a=0.0) transverse displacement 
equals zero, which confirms the applied boundary 
condition.
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Fig 5: Distribution of normalized displacement ux/a 
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Fig 6: Distribution of normalized displacement uy/a 

4.2 Distribution of Stress 
     In a view to present the graphs of stress in 
dimensionless form, actual values of stress are divided 
by the applied stress. Fig. 7 illustrates the normalized 
axial normal stress (σx/ σx

o) with respect to y-axis (y/a). 
All the points of the body have positive magnitude for 
this stress component and positive sign of the stress 
means stress along the outward direction of the body. At 
the extreme right end, the magnitude of normalized axial 
stress equals to unity, i.e. actual axial is equal to the 
applied axial stress. In all sections except x/b=0.0 for the 
points beyond y/a= 0.42 the axial normal stress exceeds 
the applied load. However, from the viewpoint of this 
axial stress, most critical section is left edge (x/b=0.0). At 
y/a=0.5 of this section (top of the hole) the magnitude of 
axial stress is more than ten times of the applied stress. 
Fig. 8 illustrates the normalized lateral stress (σy/ σx

o) 
distribution with respect to y-axis at different sections of 
the lamina. Maximum lateral stress is occurred at the 
bottom of the right edge and side of the hole. In other 
sections of the body lateral stress is very insignificant as 
compared to the axial stress. Fig. 9 shows the distribution 
of normalized shear stress (σxy/ σx

o) with respect to y-axis. 
Parabolic nature of the curves is observed for the 
mid-region (x/b=0.5 and 0.75) of the body and a very 
distinct trend is found for the section x/b=0.25. Important 
factor to observe that magnitude of lateral and shear 
stress at any point of the body does not exceed the 
magnitude of the applied stress. 
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Fig 7: Distribution of normalized axial stress 
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Fig 8: Distribution of normalized lateral stress 
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Fig 9: Distribution of normalized shear stress 

 
4.3 Comparison with Finite Element Solution 
     Commercial software FEMLAB 3.0 is used for the 
solution of the problem. Two critical sections are selected 
for the study, which are x/b=0.0 (left edge) and x/b=1.0 
(right edge). Fig. 10 to 14 shows the comparison of the 
results found from the finite difference and finite element 
method and represents the distribution of normalized 
longitudinal displacement (ux/a), normalized transverse 
displacement (uy/a), normalized axial normal stress (σx/ 
σx

o), normalized lateral normal stress (σy/ σx
o)  and 

normalized shear stress (σxy/ σx
o)  with respect to y-axis 

respectively for those two sections. It is observed that the 
results agree well within the acceptable limit. 
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Fig 10: Comparison of normalized displacement ux/a 
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Fig 11: Comparison of normalized displacement uy/a 
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Fig 12: Comparison of normalized axial stress 

0.00

0.20

0.40

0.60

0.80

1.00

-0.2 0 0.2 0.4 0.6 0.8 1

Normalized normal stress, σy/σx
o

N
or

m
al

iz
ed

 p
os

iti
on

, y
/a

0.0_FDM
0.0_FEM
1.0_FDM
1.0_FEM

 
Fig 13: Comparison of normalized lateral stress 
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Fig 14: Comparison of normalized shear stress 

 
 
5. CONCLUSIONS 
     The finite difference approach depicted in this paper 
has been developed for the solution of the 
two-directional composite lamina with a hole. However, 
it can be used for any composite material, loading 
conditions and geometrical shape. The results of finite 
difference and finite element methods are found to be in 
good accord, which extends as well as confirms the 
capability the displacement potential function 
formulation. 
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7. NOMENCLATURE 
 

Symbol Meaning 

Ex 
Elastic modulus of the material in 
x-direction (Fiber direction) 

Ey 
Elastic modulus of the material in 
y-direction 

µxy Major Poisson’s ratio 

Gxy In-plane shear modulus in the x-y plane 

Ψ Displacement potential function 

ux, uy 
Displacement components in the x- and 
y-direction 

εx, εy 
Strain components in the x- and 
y-direction 

σxx, σyy 
Normal stress components in the x- and 
y-direction 

σxy 
Shearing stress component in the xy 
plane 

un, ut 
Displacement components in the 
normal and tangential direction 

σn, σt 
Stress components in the normal and 
tangential direction 

σx
o Applied stress in x-direction 

a, b Dimensions of the rectangular lamina 
in y- and x-directions, respectively 

 
 
 


