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1. INTRODUCTION 
     The postbuckling of elastic slender beams has always 
been a fundamental topic in structural mechanics. 
Traditionally buckling is used as a failure criterion. 
However, nowadays flexible bars are being used as 
springs, linkages, robotic arms and satellite tethers.  
These structures are subjected to large variations in 
temperature during their life cycle. But compared with 
the study for the postbuckling of the beams subjected to 
mechanical loads, little was found in a search of literature 
on the thermal postbuckling of beams. 
     The investigations on thermal buckling and 
postbuckling of rods and beams are very necessary and 
important for the design of structures working in high 
temperature environments and of some thermal sensitive 
elastic elements. Because thermal elastic postbuckling of 
beams and rods are induced by the thermal bowing and 
thermal expansion, axial extension using geometric 
non-linear theory for extensible beams [1-9] must be 
considered in the analysis of this kind of problems. The 
postbuckling analysis of extensible beams or rods 
subjected to uniform and non-uniform heating has been 
carried out in the papers presented by El Naschie [1], Li 
[2-3], Li and Cheng [4], Li and Zhou [5] and Li et al. 
[6-7]. In order to obtain the secondary postbuckling 
equilibrium paths and configurations of the buckled 
beams or rods, a shooting method was employed. Vaz 
and Solano [8-9] developed a closed-form analytical 
solution via uncoupled elliptical integrals for the thermal 
postbuckling analysis of elastic slender rods with 
non-movable ends. 

     In this paper, the postbuckling behavior of a 
pinned-pinned beam presented by Li et al. [7] has been 
extended for the case of a pinned-fixed beam subjected to 
a temperature increase which is uniform in the 
longitudinal direction and non-uniform in the transverse 
direction of the beam. The material is assumed 
linear-elastic but its strain-temperature relationship is 
considered non-linear. Effects of both slenderness ratio 
and nonlinear strain-temperature coefficient on the 
postbuckling behaviors are qualitatively and 
quantitatively examined. 

Fig 1: Geometry of immovable pinned-fixed bar 
subjected to non-uniform temperature rise 

 
2. MATHEMATICAL FORMULATION 
     Let us consider an elastic bar of initial undeformed 
length L, rectangular cross-sections of constant width b 
and thickness h, and immovably one end pinned and 
other end fixed (Fig. 1). We assume that the bar is 
subjected to temperature rising T+ at the top surface and 
T− at the bottom from its undeformed state and also that 
the temperature distribution along the thickness is 
linearly changed. So the non-uniform static temperature 
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rise field T produces deformation of the bar from its 
stress free state and can be expressed as follows: 

2 2m d
h hT T T y y⎛ ⎞= + − ≤ ≤⎜ ⎟

⎝ ⎠
 (1) 

where Tm = (T+ + T−) / 2 is a mean value of the top and 
bottom temperature rises, and Td = T+ − T− is the 
difference between them. Herein, we assume that Td ≥ 0. 
By accurately taking into account the axial extension and 
the curvature of the deformed axial line, we examine the 
geometrically non-linear response of the bar, and give the 
non-dimensional governing equations of the problem as 
follows [10]: 
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The dimensionless quantities in the above equations are 
defined as follows: 
( ) ( ) ( ), , , , , , / /S U W x s u w L L A Iξ λ= =  (6) 

( ) ( )2, , /m d m d oT T L Eτ τ λ α γ= =  (7) 

( ) ( )2, , / /h vP P L H V EI m LM EI= =  (8) 
The boundary conditions of a bar with pinned-fixed ends 
can be written in dimensionless forms as follows: 
( ) ( ) ( ) ( )0 0 0 0 0S U W m= = = =  (9) 

( ) ( ) ( )1 1 1 0U W= = θ =   (10) 
In addition to the boundary conditions, a normalization 
relationship is imposed for the pinned-fixed bar as θ(0) = 
θo, where θo is the end rotational angle of the pinned end. 
Then, for a specified non-vanishing value of deformation 
control parameter θo and transverse temperature change 
parameter τd, we can determine a thermal postbuckling 
solution (S, U, W, θ, m, Ph, Pv) together with the value of 
the non-dimensional mean temperature rise τm for a 
specific buckling mode shape through Eqs. (1)-(3). 
 
3. MULTISEGMENT INTEGRATION METHOD 
     It is difficult to obtain analytical solutions to the 
boundary value problems. For the symmetric buckling 
response of a uniformly heated rod with pinned-pinned 
ends, an elliptic integral solution was obtained [8]. The 
use of elliptic integrals as a possible method of solution 
to the titled problem is precluded because the boundary 
conditions about θ are not symmetric. Thus, the 
nonlinear governing equations of thermal postbuckling 
analysis have been solved here by using the method of 
multisegment integration developed by Kalnins and 
Lestingi [11]. For convenience, Eqs. (1)-(3) can be 
written in standard form as 
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The boundary conditions Eqs.(9)-(10) can be rearranged 
as follows: 

( ) ( )0 1AY BY C+ =   (12) 
where 
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Now solutions of Eq. (11) by the method of 
multisegment integration in the interval ξ1 ≥ ξ ≥ ξM+1, 
where ξ1 corresponds to pinned end point (ξ = 0) and ξM+1 
corresponds to fixed end point (ξ = 1) of the bar at which 
the boundary condition, Eq. (12) is applicable, consists 
of the following steps: 
     (1) Division of the given interval of ξ into M 
sufficiently small segments so that the length of each 
segment is less than the critical meridional length as 
defined by Sepetoski et al. [12]. 
     (2) Integration of Eq. (11) over each of the M 
segments as an initial value problem. The initial values 
used for starting in each segment are arbitrary. 
     (3) Integration of eight additional initial-value 
problems in each segment for which the variables are the 
derivatives of the eight fundamental variables S, U, W, θ, 
m, Ph, Pv and τm with respect to each of their initial values. 
The necessary equations for these integrations may be 
derived by differentiating Eqs. (1)-(3) with respect to the 
initial values of each of the eight fundamental variables. 
The initial values for these eight initial value problems 
are the columns of a 8 × 8 unit matrix. 
     (1) Solution of a system of M matrix equations, which 
ensures continuity of the variables at the end points of the 
segments. 
     (2) Repetition of steps (2), (3) and (4) until the 
conditions of continuity of the variables at the end of the 
segments are satisfied. In each pass the improved values 
of the variables obtained in step (4) are used as their 
initial values in step (2). The convergence of the solution 
is achieved when the improved values of the variables at 
the initial point of the bar segment as obtained from step 
(4) match with the trial initial values for the initial value 
integration of Eq. (11). 
     The derivation of the necessary differential equations 
for carrying out the integration of eight additional 
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initial-value problems and more details about the 
multisegment integration method are discussed in Ref.  
[10]. 
 
4. RESULTS AND DISCUSSIONS 
     The numerical solution is implemented through a 
computational program developed in the mathematical 
software Mathcad 14 [13] and a parametric study is 
carried out with the purpose of analyzing the results for 
bar slenderness ratios λ = 50, 100, 150 and 200 and for 
dimensionless transverse temperature rise, τd = 0, 10, 20 
and 30. 
 
4.1 Critical Temperature for Thermal Buckling 
     From the physical meaning of the problem, the onset 
of buckling is determined by the linearized problem of 
Eq. (11) and can be arrived at by the limit as θo goes to 
zero in Eqs. (12). The minimum of τm at which a 
nontrivial solution of the linearized problem exists is 
called critical nondimensional temperature defined by τm 
= τcr. Numerical results of the nondimensional critical 
temperature rise τcr corresponding to the magnitude of λ 
and γ are listed in Table 1. The results presented for γ = 0 
and γ = -5 (metallic materials) are corresponded to 
materials with linear and nonlinear strain-temperature 
relationships respectively. 
 
Table 1: Nondimensional critical temperature rise τcr at 

various slenderness ratios 
 

Nonlinear thermal strain 
coefficient 

Slenderness ratio 
λ 

γ = 0 γ = −5 

50 20.19 21.08 
100 20.19 20.39 
150 20.19 20.28 
200 20.19 20.24 

 
     It is found that both the geometric parameter λ and the 
physical parameter γ have effects on τcr. For Eq. (4), we 
can see that the axial stretching is related to parameter γ 
or λ. Obviously, only for γ = 0, τcr is independent of the 
geometric parameter λ, the slenderness ratio of the bar. 
But for γ ≠ 0, the value of τcr decreases with the increment 
of the value of λ and increases with the change of the 
value of γ. 
 
4.2 Validation of the results 
     In order to verify the accuracy of the numerical results 
and the validity of the present mathematical model 
developed throughout the present study, comparisons 
with the previously published results have been carried 
out. Figure 2 shows the post-buckling deformed 
configuration presented by Li et al. [6] and the present 
study. In this figure, the solid line corresponds to the 
results of the present works while the legend marks 
correspond to those of Li et al. [6]. The overall tendency 
of the present results is completely the same as that of 
calculated by Li et al. [6]. 
 

 
Fig 2: Comparison of Thermal Post-Buckling Deformed 

Configurations of a Pinned-Fixed Ended Rod for the 
Results Obtained in the Present Work and Those 

Obtained by Li et al. [6] at λ = 120 and γ = 0 
 
4.3 Characteristics of postbuckling behavior 
     For a specific parameter θo or τm , the thermal 
postbuckled configurations of the bar, W(ξ) is obtained as 
shown in Fig. 3. From these figure, it can be seen that 
each curve attains its maximum amplitude at ξ = 0.4 
approximately, due to non-symmetric end condition.  
 

 
Fig 3: Thermal Post-Buckling Configuration of Bar with 

τd = 10, λ = 100 and γ = 0 for Some Values of τm 
 

 
Fig 4: Compressive Load Beyond Bifurcation of Rod as a 

Function of Temperature Rise for Some Prescribed 
Values of λ 

 
     The characteristics curves showing the 
load-temperature relationship in case of uniform heating 
(τd = 0) is given in Fig. 4. These curves are all 
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monotonously decreasing function of dimensionless 
temperature rising. Once the critical buckling load is 
reached and temperature is progressively increased, the 
compressive axial force arising in the boundaries falls 
considerably. In fact, the nature of these curves 
qualitatively analogous with the experimental findings of 
the works of Correia Rodrigues et al. [15]. 
 

 
Fig 5: Maximum Deflection of Bar as a Function of 

Temperature Rise τm with τd = 10 for Some Prescribed 
Values of λ 

 
4.4 Effect of Slenderness Ratio 
     In order to illustrate the influence of the slenderness 
parameter λ on the buckling deformation, the secondary 
equilibrium paths of the thermally postbuckled bar 
subjected to a non-uniform temperature rising (τd = 10) 
with different values of λ in terms of maximum 
deflection W(0.4) versus τm is plotted in Fig. 5. Due to the 
effect of non-uniform heating, the intersection points of 
the curves with the coordinate τm axis are not the same 
and the value is just below the critical temperature 
parameter τcr. When τm > τcr, the postbuckling 
deformations are totally dependent on λ, which is a 
feature of nonlinear theory of the bar with axial extension. 
It is definitely noteworthy from Fig. 5 that an increase of 
slenderness ratio from 100 to 200 possesses the same 
deformed secondary equilibrium path of the pinned-fixed 
bar but at higher mean temperature rise. On the other 
hand, for a particular non-dimensional temperature rise, 
the maximum deflection of the bars increases stridently 
with the decrease of the bar slenderness ratios. 
 
4.5 Effect of nonlinear thermal strain coefficient 
     In this paper, extensive analyses are carried out to 
control the thermal buckling of a bar made of a 
physically nonlinear thermo-elastic material as proposed 
by Smith et al. [14]. Here γ, used throughout this study, 
represents a coefficient that expresses nonlinear 
characteristics of a material. The coefficient γ = −5 is 
relatively large for steels, but it is assumed to emphasize 
nonlinear effects. A safe buckling temperature for a 
linear case is smaller than the corresponding nonlinear 
one when the coefficient γ is negative (Fig. 5). 
Furthermore, the growth of the postbuckling deflections 
is more rapidly developed with the introduction of 
nonlinear strain temperature coefficient. These effects 
have similar nature in all the characteristics curves 
compared with the linear cases. However, more 

dominant rise of nondimensional temperature with the 
governing parameters is observed for very high 
slenderness ratios. 
 

 
Fig 6: Thermal Post-Buckling Configuration of Bar with 

τm = 50, λ = 100 and γ = 0 for Some Values of τd 
 
4.6 Effect of transverse temperature rise 
     For some prescribed values of transverse temperature 
rise parameter τd, the postbuckling equilibrium 
configuration is shown in Fig. 6. For a comparison, the 
secondary equilibrium paths of the bars with τd = 0 is also 
plotted in solid line. From these curves, it is found that 
the bending deformation produced by transverse 
temperature change τd is the main part in the whole 
deformations when the mean temperature rising 
parameter τm < τcr. For pinned end, an outstanding 
dominance on τd on the postbuckling deformation of the 
bar is clearly distinguished from the fixed end condition. 
The reason behind this occurrence can be explained by 
the kinematic conditions of pinned-fixed bar as described 
inEqs. (9)-(10). 

 
Fig 7: Thermal Post-Buckling Equilibrium Paths W(0.4) 
− τm of Bar with λ = 100 and γ = 0 for Some Values of τd 

 
     From the characteristics curves of maximum 
deflection versus τm as shown in Fig. 7, it is clear that the 
dominance of τd on maximum deflection is also varied 
for different τm. When τm < τcr, the bending deformation 
produced by τd significantly increases the maximum 
deflection. But, when τm > τcr, the contribution of axially 
thermal expansion to the transverse deformation 
becomes more and more significant with the increment 
of the mean temperature rise τm. 
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Fig 8: Thermal Post-Buckling Equilibrium Paths Ph− τm 

of Bar with λ = 100 and γ = 0 for Some Values of τd 
 
     The relations between the dimensionless horizontal 
constrained force, Ph and the mean temperature rise 
parameter, τm for different values of τd are given in Fig. 8. 
The curves with large τd, hence a higher thermal moment, 
bend over more that those with small τd. Also, as τd 
approaches zero, the curves approach the behavior of an 
axially restrained rod with only τm, i.e. a bifurcation on 
thermal buckling problem with no transverse deflection 
until the critical temperature has been reached. All curves 
also asymptotically approach (Ph)cr as the τm goes to 
infinity.  
 

 
Fig 9: Maximum Deflection of Pinned-Fixed Bar as a 

Function of Temperature Rise τd with τm = 50 for Some 
Prescribed Values of λ and γ 

 
     Figure 9 show the effect of nonlinear 
strain-temperature coefficient on the maximum 
deflection with the variation of transverse temperature 
rise parameter. These curves make a reverse performance 
as described earlier and negligible increase of maximum 
deflection can only be found with the increase of 
transverse temperature rise at lower slenderness ratio. 
 
5. CONCLUSIONS 
     This paper has presented the results of a numerical 
study of the postbuckling behavior of a slender elastic 
bar with pinned-fixed end subjected to non-uniform 
heating. In particular, this study has focused on how the 
end constrained of the bar structure affects the 
postbuckled deformation under non-uniform transverse 
temperature rise. From the results of this study, the 
following conclusions may be drawn. 

     (1) Due to non-uniform heating, both thermal 
expansion and thermal bowing induce buckling in the 
structure. The postbuckling analysis of slender elastic 
bars subjected to both uniform and non-uniform 
temperature variation is highly dependent on the 
prescribed end conditions. 
     (2) The nonlinear strain-temperature coefficient 
shows a remarkable influence on the critical buckling 
temperature and postbuckling response of the heated bar. 
The nonlinearity effects become significant with the 
increase of the slenderness for uniform mean temperature 
rise variation but reverse trend is observed for 
non-uniform transverse temperature rise variation. 
     (3) The thermal post-buckling of a bar develops 
slowly and monotonously along with increase of the 
mean temperature rise. The dimensionless buckling 
parameters are also sensitive to the slenderness ratio of 
the bar and show the consistent behavior for both 
uniform and non-uniform heating conditions. 
     (4) The equilibrium path of the non-uniformly heated 
bar is similar to that of an initially deformed beam 
because of the thermal bending moment produced in the 
bar by the transverse change. 
     (5) The pinned end is more sensible to transverse 
temperature rise than the fixed end and hence the fixed 
ended bar renders more safety at higher temperature with 
minimum deflection. 
     (6) It is observed that the bar having higher 
slenderness ratio gives lower maximum deflection at the 
same mean temperature rise. 
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7. NOMENCLATURE 
 
Symbol Meaning Unit 

A Cross-sectional area of the 
structure m2 

b width of the bar cross-section m 
ds deformed length m 
E Young’s modulus of elasticity N/m2 

h height of the bar cross-section m 

H 
Horizontal resultant Compressive 
force N 

I cross-sectional second moment of 
inertia m4 

k Uniform curvature m-1 

K Nondimensional curvature  
L undeformed length of the bar m 

Lo 
Constants related to material 
nonlinearity with temperature N.m-2

 

m Non-dimensional bending moment  
M Bending moment N.m 

Ph 
Non-dimensional horizontal 
resultant Compressive force  

Pv 
Non-dimensional vertical resultant 
force  

s Neutral axis of the deformed bar m 

S Non-dimensional arc length of the 
deformed neutral axis  

T Temperature rise ° C 

Td 
Temperature change from one 
surface to other in y-direction ° C 

Tm Average bar temperature rise ° C 

T+ Non-uniform transverse 
temperature rise at top surface ° C 

T– Non-uniform transverse 
temperature rise at bottom surface ° C 

u horizontal displacement of the 
undeformed element m 

U Non-dimensional horizontal 
displacement  

V Vertical resultant force N 

w vertical displacement of the 
undeformed element m 

W Non-dimensional vertical 
displacement  

x, y, z Cartesian coordinates m 
Greek Symbols 
α Thermal expansion coefficient /° C 
θ rotational angle of the cross-section ° 
θo End rotational Angle ° 

γ Nonlinear strain-temperature 
coefficient  

λ Slenderness ratio  
μ Stretching ratio  

ξ Non-dimensional length of 
undeformed neutral axis  

π Pi number  

τm 
Non-dimensional mean 
temperature rise  

τd 
Non-dimensional transverse 
temperature rise   

Subscript 
c Compressive  
cr Critical  
o End point  

 


