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1. INTRODUCTION 
Functionally graded materials (FGMs) have greatly 

attracted the attention of the researchers in recent times. 
These materials have certain advantages over the 
homogeneous materials and conventional composite 
materials. To make the best use of the FGMs, a thorough 
understanding of their behavior in different conditions is 
necessary. 

Functionally graded materials (FGMs) are 
non-homogeneous solids, which consist of two or more 
distinct material phases, such as different ceramics or 
ceramics and metals, and are the mixture of them such 
that the composition of each changes continuously with 
space variables. The change in composition induces 
material and micro structural gradients, and makes the 
functionally graded materials different in behavior from 
homogeneous materials and conventional composite 
materials [1-4].These materials are tailorable in their 
properties via the design of the gradients, which, in turn, 
depend on material distributions. From a mechanics 
viewpoint the main advantages of material property 
grading appear to be improved bonding strength, 
toughness, wear and corrosion resistance and reduced 
residual and thermal stresses. Some typical applications 
include thermal barrier coatings of high temperature 
components in gas turbines, surface hardening for 
tribological protection and graded interlayers used in 

multilayered microelectronic and optoelectronic 
components [1-4]. Because of their outstanding 
advantages over  homogeneous materials and 
conventional composite materials, in recent years, much 
attention has been paid for analyzing the various aspects 
of FGMs to get an in depth knowledge of the potential 
applications of these materials as structural and 
functional elements in aerospace industries, chemical 
industries, and nuclear power plants. Therefore, FGMs 
have become very important in the field of materials 
science research. 

For the ease of analysis, it is often conventional to 
regard the material properties to be some certain assumed 
functions of the space variables. The most common 
functions assumed to model the material properties are 
the exponential function, the power function and the 
linear function. 

In this study, it is assumed that the rectangular elastic 
body is made of a functionally graded material (FGM) 
and the Young’s modulus of the material varies either 
linearly or exponentially in the vertical direction. Both 
the coefficient of thermal expansion and the Poisson’s 
ratio remain constant. The body is subjected to boundary 
conditions (both symmetric and asymmetric) and 
variation of temperature and the stresses induced due to 
these are analyzed by the finite element method. 
The finite element method (FEM) is a numerical method 
which can be used for the accurate solution of complex 
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engineering problems. The finite element method as 
known today has been presented in 1956 by Turner et al. 
[5]. The general applicability of the FEM can be seen by 
observing the strong similarities that exist between 
various types of engineering problems [5,6]. Considering 
all these facts, the finite element method is chosen here to 
analyze the stresses. 

All the elasticity problems can be dealt within the 
framework of any one of the following three fundamental 
boundary value problems: 
1. Determination of the elastic field (stress and 
displacement) in the interior of an elastic body in 
equilibrium when the boundary conditions are prescribed 
in terms of forces and stresses only. 
2. Determination of the elastic field in the interior of an 
elastic body in equilibrium when the boundary 
conditions are prescribed in terms of strains or 
displacements only. 
3. Determination of the elastic field in the interior of an 
elastic body in equilibrium when the boundary 
conditions are prescribed in terms of stresses over a part 
of the boundary and displacements over the other parts of 
the boundary. These categories of problems are called 
mixed boundary value problems [7].  

In our study, we considered a displacement boundary 
value problem. 

As a representative elastic body, a 2D rectangular 
plate made of FGM is selected (Fig. 1). This is because 
2D rectangular bodies are the most commonly used 
structures. Different boundary conditions can be applied 
along the four edges of the body. 
      
2. MATHEMATICAL MODELING 

Consider a rectangular body made of FGM and 
having length L, width W and thickness t respectively. 
The body is regarded as a 2-dimensional (2D) elastic 
body because its thickness is very small compared to its 
length and width. The body is represented in the 
Cartesian coordinate system (Fig 1).  

The Young’s modulus, Poisson’s ratio and coefficient 
of thermal expansion are denoted by E, ν and α 
respectively. It is assumed that the Poisson’s ratio ν and 
coefficient of thermal expansion α remain constant. Only 
the Young’s modulus E varies either linearly or 
exponentially in the vertical ( y )direction. Therefore, in 
equation form, 
 
E = E0  - β*y     ( linear case )  ……  (1) 
 
E = E0 * exp ( - β * y )   (exponential case ) …. (2) 
 

Where E0 and β are constants. The variation of 
temperature is denoted by ∆T and horizontal and vertical 
displacements are denoted by u and v respectively. 
Because of the effect of ∆T and imposed values of u and 
v (that is, displacement boundary conditions) the body 
will undergo strains and as a result stresses will develop. 

For the above model of the problem, the developed 
stresses are estimated by the finite element method. 
Since analytic solution of FGM problems are often 
difficult to obtain, the FE analysis is done by using both  
the triangular element and the rectangular element so that 

some comparisons can be made. 
 

  
                                        

Fig 1: A 2D rectangular elastic body 
 
 
2.1 Description Of The Particular Problem  
 

 
Fig 2: Symmetric boundary condition 
 
 

 
Fig 3: Asymmetric boundary condition 
 

In order to get some numerical results, some specific 
values are considered for the dimensions of the body,  the 
properties of the materials and the imposed conditions. 
Here we consider, 
Length of the body, L = 1000 mm 
Width of the body, W = 800 mm 
Thickness of the body, t = 2 mm 
Young’s modulus, E0 = 200 GPa  
β = 80000 MPa / m ( for the linear case ), β = 1.0 MPa / m 
(for the exponential case ). 

Y 

x 
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Poisson’s ratio, ν = 0.3  
Coefficient of thermal expansion, α = 0.000012 /0C 
Increase of temperature, ∆T = 200C                         
So, from equations (1) and (2), E = 200000 -  (80000 * y)   
MPa    ( for the linear case ) 
 E = 200000 * exp ( - y )    (for the exponential case ) 
where y is in meters in the vertical direction. 

The two types of boundary conditions used, namely 
symmetric and asymmetric are shown in Figs. 2,3. 
Applied displacements (v=0.1mm for symmetric 
boundary conditions and 1mm for asymmetric boundary 
conditions) are the applied loads in addition to 
temperature variations for four different cases. 
 
2.2. Solution by FEM                   
 
2.2.1 Stress – strain relations  

Since the thickness of the body is almost negligible 
compared with the other two dimensions, the analysis of 
the thin body loaded in the plane of the body can be made 
using the assumption of plane stress. In plane stress 
distribution, it is assumed that 
 
σzz  =  σzx  =  σyz  =  0       (3) 
 
The strain & stress vector are expressed as 
                                     

ε     =      ,    σ   =     (4) 

 
When ∆T is nonzero, there will be initial (thermal) strain 
ε0.The thermal strain vector is expressed as  
 

ε0  =  α * ∆T *     (5) 

 
The material property matrix [ D ] is expressed as    
  

[ D ] =    

 
The stress is calculated as  σ  =  [ D ] *  ε                 (6) 
 
Strains are defined as εxx =    ,   εyy =    , 

  
 εxy =   +                                                            (7)  

 
where u and v are nodal displacements along 

horizontal and vertical direction respectively.  
The strain vector is expressed as   ε   =  [ B ]  u       (8)

   
[ B ] is a 3*6 matrix for triangular element and 3*8 
matrix for rectangular element. 
 
2.2.2. Step by step solution 

The initial step was to divide the structure into 
elements and to choose the suitable interpolation 
function. Considering the 2D rectangular body, the 

triangular element (also known as the membrane 
element) was selected. Another type of element was 
required to make comparison and to provide a more 
reliable result, if possible. Because of the geometry of the 
body, the rectangular element was a natural choice. The 
triangular element is a 2D simplex element as the 
interpolation function is a linear function. On the other 
hand, the rectangular element is a multiplex element 
because its boundaries are parallel to the coordinate axes 
to achieve inter element continuity. Here 40 triangular 
elements and  
 

 
Fig 4: Node numbering. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Element numbering for triangular element 
 
 

20 rectangular elements were used in 5 layers for the 
2D FGM body (Figs. 4,5). The triangular element was 
taken as half of rectangular element. The elements were 
of equal size. The number of nodes was 30.The FEM 
provides better approximation to the exact value, if the 
aspect ratio ( the ratio of the largest dimension of the 
element to the smallest dimension ) is nearly unity 
[6].Here, the aspect ratio was unity for the rectangular 
element and 1.41 for the triangular element, respectively 
(Figs. 4,5).The bottom layer is the layer 1 and the top 
layer is the layer 5. For clarity, layer 1 and layer 2 contain 
nodes 6-10 and 11-15, respectively, and so on, in Fig. 4.                 
The next step was to derive the element equations that is, 
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to formulate the element stiffness matrix and load vectors. 
These equations can be obtained using the principle of 
minimum potential energy. The following formulae were 
used, 
Element stiffness matrix, 
 
 [k(e)] =                                      (9) 
 
Element load vector due to thermal strain,  
 
Pi

(e)
  =                                     (10) 

 
Then the element equations were assembled to form the 
overall system of equations of the form 
                     
 [ k ]  u  =  P                                                              (11)  
 
where [ k ] is the assembled stiffness matrix, u is the 
vector of nodal displacements and P is the vector of 
nodal forces for the complete structure.  

The next step was the incorporation of boundary 
conditions. Here, we had only displacement boundary 
conditions of symmetric and asymmetric types (figs. 
2,3).  

Then the system of equations was solved by Gaussian 
elimination to obtain the nodal displacements u. From 
these known nodal displacements, element strains and 
stresses were computed using the relations of plane stress 
conditions.   
 
3. RESULTS AND DISCUSSION 

Regarding validity of the FEM modeling of the 
problem, a sample test was done for an isotropic, 
homogenous elastic body of the same size under constant 
stress condition. An exact result was obtained by the 
same code used later for this specific problem.  
 
Case 1. No thermal stress & symmetric 
boundary condition 

The triangular and rectangular element gave 
absolutely identical results for the symmetric case. The 
strains are different for the 5 layers but the stresses are 
same for all the elements. This is true for both linear and 
exponential variation of Ethel results are shown in the 
table below: 
 
Table 1: Stresses for the FGM for case 1 
Variation of E σxx 

( MPa) 
σyy 

( MPa) 
σxy 

( MPa) 
Linear -5.17 -17.22 0 
Exponential -3.84 -12.81 0 
 
Case 2. No thermal stress & asymmetric 
boundary conditions 

The results provided by the triangular and rectangular 
element are different. Both the strains and the stresses 
vary from element to element for linear as well as 
exponential variation of E. Specific results are not shown 
for brevity. 
 
Case 3. With thermal stress & symmetric 

boundary conditions 
For the triangular element, the stresses and strains are 

different in different layers. But at a particular layer, the 
values of strains and stresses are constant. The 
exponential case shows more variation than the linear 
case.  

For the rectangular element, the stresses and strains 
are different in each element for both linear and 
exponential case.  

One important thing to be noted here is that, the 
analysis with triangular elements shows that no shear 
stresses will develop in the body. But in case of 
rectangular elements, shear stresses do exist and vary 
from element to element.  

The results of triangular and rectangular elements 
differ largely. Some results are shown graphically (Figs. 
6,7). 
 
 

 
Fig 6:Stress distribution for case 3 with triangular      
            element (E varies exponentially).      
           

 
Fig 7: Stress distribution for case 3 with rectangular  
             element (E varies exponentially). 
 
 
Case 4. With thermal stress & asymmetric 
boundary condition 

It is found that the stresses and strains vary most 
significantly for case 4, from element to element, for 
both linear and exponential cases. But the numerical 
values are different for the triangular and rectangular 
cases.  Some of the results are given in Figs. 8,9.  

Since the triangular element assumes constant strain 
in the element, the rectangular element provides a more 
reliable result. In general, it is concluded that whenever 
asymmetric boundary conditions or thermal stresses are 
present, every element will undergo different values of 
stresses. Since perfectly symmetric boundary conditions 
are difficult to maintain and also temperature change is 
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unavoidable, so, the elastic body made of FGM will have 
variable stresses from point to point as shown in Figs. 
7-9. 

 

 
Fig 8: Stress distribution for case 4 with triangular      
             element (E varies linearly). 
 

 
Fig 9: Stress distribution for case 4 with rectangular  
             element (E varies linearly). 
 
4. CONCLUSIONS 

This study reveals that the effect of thermal stress and 
asymmetric boundary conditions on a 2D rectangular 
FGM elastic body is to cause variable stresses within the 
body. All the three components of plane stress will vary 
from point to point in the body if anyone of the above 
factors are present. But when thermal stress and 
asymmetric boundary conditions are both absent, the 
stresses are constant throughout the body.  

In this work, a regular shaped body was analyzed. 
Since FEM is even better suited for irregular shapes, 
future researches can focus on irregular FGM bodies to 
find out the effect of thermal stress and boundary 
conditions. 
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6. NOMENCLATURE 
 

Symbol Meaning Unit 
E: 

x: 

ε: 

σ: 

 

Modulus of elasticity 

Axial distance 

strain 

Stress 

 

GPa 

mm 

 

MPa 

 


