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1. INTRODUCTION 
     Instability of structures is always a challenging topic 
for practicing engineers. Therefore, calculation of 
buckling loads by different numerical schemes is 
extensively reported in the literature; one of the major 
reasons of such studies is the discrepancy of results 
between the experimental buckling loads and their 
predicted values. Those different numerical methods 
include finite element, finite difference, as well as 
strength of materials approach etc.  A few of such studies 
are listed in the reference. For example, Bert and Ko [ 1 ] 
used finite difference technique and calculated buckling 
loads of columns constructed of bimodular material, 
which has a different Young’s modulus in tension than it 
has in compression. Gadalla and Abdalla [ 2 ] predicted 
buckling behavior of compression members with 
variability in material and/or section properties based on  
eigen solutions. Earlier Li [ 3 ] dealt with multi-step 
non-uniform columns by analytical approach.  
     Commercial FEM code ANSYS was used for 
comprehensive analysis of slender as well as short 
columns made of stainless steel and shape memory alloy 
[4] - [ 6]. It was pointed out in those studies that though 
Euler’s slender column formula can be used for ideal  
 

 

 

 
cases, inclusions of actual stress-strain relations, which 
are non-linear, become necessary if one needs to 
rigorously study the postbuckling path even for a very  
slender column. Moreover, in those of our previous 
studies, tensile and compressive stress-strain curves were 
used separately for simulation purpose. Consequently, it 
was concluded that for numerical predictions of response 
of short beams/columns made of steel or, shape memory 
alloy (SMA), simultaneous use of non-linear stress-strain 
curves in tension and compression becomes essential in 
some cases [4]- [ 6 ].  
     It should be noted that though commercial FEM code 
ANSYS has material model like Mooney-Rivlin, that can 
use both of these tension-compression stress-strain 
curves simultaneously, but with substantial 
modifications while evaluating Mooney-Rivlin constants 
[ 5 ]. Since, such modifications are not always desirable; 
therefore, in their next study Rahman, Akanda and 
Hossain [7] and Hossain [ 8] used both tensile and 
compressive stress-strain curves simultaneously. In these 
two studies, a strength of materials approach, termed as 
Timoshenko’s method [9], was used to calculate the 
buckling load of both ends hinged columns with 
non-symmetric response in tension and compression. It 
should be mentioned here that this strength of materials 
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method is suited only for both ends hinged columns. A 
complete study, however, should also include all 
practically possible boundary conditions of columns. 
Bending of superelastic shape memory alloy (SMA) 
beams have been reported by Auricchio and Sacco [ 10], 
Rejznar et al.[11] and Raniecki [12]. In our immediate 
previous study, a numerical scheme based on integration 
technique was used to comprehensively deal with the 
bending of a tapered shape memory alloy (SMA) beam 
that has highly non-linear stress-strain relations and also 
shows non-symmetric response in tension and 
compression, [13]. 
 

Experimental stress-strain curves

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

0 0.05 0.1 0.15 0.2
Strain

St
re

ss
 (P

a)

Compression, true

Tension, true

 
Fig 1: Stress-strain curves for the super elastic SMA in 
compression and tension [14] 

     Observing the above-mentioned facts, the present 
study concentrates on a suitable numerical scheme in 
order to find buckling load of any short column by 
simultaneously using column’s highly non-linear 
stress-strain curves in tension and compression for all 
practically possible end conditions. Therefore, 
stress-strain curves that are asymmetric in tension and 
compression as shown in Fig.1 are used for simulation 
purpose so that the usefulness of the devised numerical 
scheme can be demonstrated. The numerical scheme is 
based on finite difference technique associated with a 
special iteration scheme. Although buckling of columns 
have been studied by finite difference technique by other 
researchers as mentioned, the present study incorporates 
highly non-linear (and asymmetric) stress-strain curves 
for large values of strains which, we believe something 
new as far as numerical analysis is concerned for short 
columns. Moreover, the present study relies on the 
self-developed complete computer code which is rather 
simple, straightforward but, efficient and therefore, no 
commercial software is needed for detail analysis.  
     Such a study will be practically important as well 
because tension-compression asymmetry becomes 
prominent for large inelastic bending of any short 
column, used in numerous structural applications. From 
the curves of Fig. 1, it is seen that the tension 
compression asymmetry becomes prominent if the strain 
exceeds 1%.  
      
2. MATHEMATICAL MODELING 
     The basic equations for the analysis of beam-columns 

can be derived by considering the beam subjected to an 
axia compressive force P and to a distributed lateral load 
of intensity q. The equation is 
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We obtain the governing equation as 
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Eq (3) can be used for any column, in slight bent shape, 
having variable geometric and material properties. 
 
Boundary conditions, for both ends clamped: 
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Boundary conditions, for both ends hinged: 
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Finite difference expressions with order of error h2 are 
used for boundary conditions as well as governing 
equations.   
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M-∆, and E” -∆ relations are known directly by 
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Computer code using Eq (6) to Eq (8) and Fig 1. 
 
 
 
3. RESULTS AND DISCUSSION 
     To solve Eq. (1) it is very important to select the 
optimum value of h. From fig-2 it is clear that shape 
varies a very little with grid size. Therefore we have 
selected 90 grids for our computation. 
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Fig 2: Buckled shapes of the column for different grid 
sizes 

To correctly predict the deformed shapes, E″   for 
different values of P must be available (as shown in Fig. 
3).Using this value, Eq(1) is solved to find the maximum 
buckling load. 
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Fig 3: Variation of E with P 

     By this method buckling load can be determined from 
the P-δ curves. The solutions do not converge anymore 
as at the point of instability; deformation becomes too 
large. Some results are also generated for comparison 
purpose by Timoshenko’s method [13]. By this latter 
method, critical load only for a both ends hinged column 
can be determined from the peak point of slenderness 
ratio versus midspan deflection curve. 
     Now column with an eccentric load is modeled to 
compare the value with Timoshenko’s method [8]and [9]. 
Based on Fig 3 and M-∆ , E” - ∆ relations we calculated 
E” at every grid point to find the critical load. Critical 
load for an eccentricity of 5mm is found to be 1625 kN 
which is 1635 kN by Timoshenko’s method [8]. 
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Fig 4: Load deflection curve with eccentric axial loading 

    The above comparison proves the soundness of the 
method used. 
     Loading path of any column (including a superelastic 
SMA column) can be predicted by the method devised. 
The unloading path of a superelastic SMA column, 
however, can’t be predicted without the unloading 
stress-strain curves. For the short SMA columns 
considered in this study permanent deformations are 
likely to occur upon unloading which are not easy to 
predict even by the available commercial softwares. 
Moreover, from our experience it is obvious that 
predictions of unloading paths of highly slender 
superelastic SMA columns can be important and 
interesting [14] and[ [6]. But predictions of buckling are 
much more important for short SMA columns than the 
predictions of their unloading paths [5]. Therefore, the 
paper concentrates on the calculations and presentations 
of critical and nonsymmetric stresses for the short SMA 
columns. 
     Based on Fig 3. for L/k= 38, 34.65, 28 Figs. 5, 6 and 7 
show the P-δ curve, shape of the buckled column and 
corresponding bending moments.  Critical load for both 
ends clamped columns varies with l/k ratios. For l/k=38, 
Pcr=3501 kN and for l/k=28, Pcr =4458 kN and 3779 kN 
when l/k=34.65. Critical load is increased when 
slenderness ratio is decreased, but not following Euler’s 
formula. 
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Fig 5: Load deflection curve for column with different l/k 

     The results are finally compared below with the value 
obtained for SMA wire of circular cross section with 
diameter 2 mm [14]. 

Cross-section 
100×50 mm 
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Table 1: Comparison of  σ c 
 

σ c (MPa) 
 L/k 

 Present Study 
Cross-section 
(100×50 mm) 

Reference [14] 
Φ =2 mm 

28 891.6 946.5 
38 700 575 
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Fig 6: Deflected shape for l/k = 28, 34.65 and 38 
corresponds to critical load 
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Fig 7: Moment curve for l/k = 28, 34.65 and 38 
corresponds to critical load 

 
6. CONCLUSIONS 
     A highly reliable and accurate numerical scheme is 
demonstrated in order to predict buckling load of short 
columns having nonlinear and asymmetric σ –ε curve in 
tension and compression. 
     The computer code based on FD technique can be 
used to reliably predict buckling response of any column 
with any type of boundary conditions and loading. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
E: 

x: 

ht: 

 

Mb: 

P: 

e: 

L: 

ε: 

σ: 

δmax: 

∆: 

y 

Modulus of elasticity 

Axial distance 

height of rectangular 

cross-section 

bending moment 

axial load on column 

load eccentricity 

column length 

strain 

Stress 

Maximum lateral deflection 

h/ ρ  

lateral deflection 

Gpa 

mm 

mm 

 

kN-m 

kN 

mm 

mm 

 

Pa 

 

 

mm 

 


