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ABSTRACT 
     In our earlier work (Sen & Veeravalli, Sadhana/Proc. Indian Acad. Sci., 1998 and 2000) we have explored the 

relevance of hydrodynamic stability theory to fully developed turbulent wall flows. Using an extended Orr-Sommerfeld 

Equation, based on an anisotropic eddy-viscosity model, it was shown that there exists a wide range of unstable wave 

numbers (wall modes) which mimic some of the key features of turbulent wall flows.  Here we present experimental 

confirmation for the same. As discussed below there is good qualitative and quantitative agreement between theory and 

experiment. Once the dominant coherent structure is obtained from stability theory, control of turbulence would be the 

logical next step.   

    We also present some theoretical work for bypass transition (Klebanoff/K-modes) wherein the receptivity of a 

laminar boundary layer to a vortex sheet in the free-stream has been studied.  The results agree well with the numerical 

simulations of Fasel (2002).  Further to this it is shown that triadic interaction between K-modes, 2D TS waves and 3D 

TS waves can lead to rapid algebraic growth, which is possibly the cause of bypass transition.  A similar mechanism 

seems to carry over to the inner wall structures in wall turbulence and it is possible that this is the “root cause” for 

sustenance of turbulence.  
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1.  INTRODUCTION 
     The relevance of hydrodynamic stability theory to 

wall bounded turbulent flows was first extensively 

investigated by Reynolds and co-workers (see for 

example Hussain & Reynolds, 1972 and Reynolds & 

Hussain, 1972).  Using an eddy viscosity model for the 

turbulence they derived an Orr-Sommerfeld like 

equation for turbulent wall flows.  

     However, they did not find any region of instability 

in their theoretical work and this was confirmed by 

their experiments Hussain & Reynolds, 1972. 

     Sen & Veeravalli (1998 and 2000a) (hereinafter 

referred to as S&V1 and S&V2 respectively) 

considered the problem afresh and concluded that the 

main reason that the previous investigators failed to 

find any unstable modes was that they used an isotropic 

eddy viscosity model, which is really not justified close 

to the wall.  The solutions found by S&V1 mimicked 

some of the key features of wall bounded turbulent 

flows like the location of the production peak.  Further, 

these modes were found to scale with inner variables 

and are thus universal. S&V2 also noted that the 

dominant modes (experimentally) obtained by Hussain 

& Reynolds (1972), in a turbulent channel, were 

damped outer modes, because the disturbance 

frequency was too low.  

     The aim of the present work is to verify 

experimentally, the theoretical results of S&V1 and 

S&V2 and to explore the possibility of controlling 

turbulence, for example with compliant walls.  We also 

present theoretical work on the receptivity of the 

boundary layer (laminar) to a vortex sheet in the free 

stream and discuss its implications to fully turbulent 

wall flows by considering triadic interactions between 

K-modes and 2D and 3D TS waves. 

 

2.  THEORY 
     A brief outline of the theory will be presented here. 

[Details may be seen in Sen & Veeravalli, 1998, 2000a  

 and 2000b.] In the discussion to follow the 

instantaneous velocity vector ui and pressure p obey 

the incompressible Navier-Stokes and continuity 



equations. The velocity and pressure fields are usually 

decomposed in turbulent flows by the well-known 

Reynolds decomposition; however, here we prefer a 

triple decomposition as follows: 

 

; .i i i iu u u u p p p p′ ′= + + = + +% %                      (1) 

 

iu and p  are respectively the mean velocity and 

pressure, iu′ , p′  are the (random) turbulent 

fluctuations and iu
~

, p~  correspond to an organised 

(solenoidal) disturbance (with zero mean).  The 

organized disturbance is assumed to be small compared 

to the turbulent fluctuations.  After some algebra, one 

obtains the dynamic equation for the organised 

disturbance (reported in S&V1).  In deriving the 

governing equation, the disturbance stream function 

ψ is assumed to be two dimensional and expressed as  

( )
( )

i x ct
y e

αψ φ −=  where α is the spatial wave 

number, and c = cr + ici is the complex wave speed.    

     In S&V1 and S&V2 it was shown that the unstable 

modes obtained are wall modes, which are found to 

scale perfectly with inner scales. Therefore the 

governing equation may also be written in terms of 

inner variables using the friction velocity 
*
u  as the 

velocity scale and /
*
uν as the length scale (ν is the 

kinematic viscosity). We denote quantities that are non-

dimensionalised by the inner scales with the superscript 

(+). The details of the non-dimensionalisation and the 

physical significance of the different terms is given in 

S&V1; here we present the final equation in inner 

variables: 
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 = 0                          (2) 

 

     Equation (2) is in a general form applicable to all 

wall modes, because the Reynolds number becomes 

unity in inner variables; only, the eddy viscosity E, and 

the anisotropy function λ , have very weak outer 
dependence (for details of E and λ see S&V1 and 

S&V2).  

      Having formulated the stability equation, we next 

look at the boundary conditions for channel-flow and 

boundary layer flow. For a rigid wall, the normal 

velocity component vanishes at the wall, and this gives 

the first boundary condition. The second boundary 

condition is obtained from the ‘no-slip’ condition.  In 

actuality, it has been shown by Sen et al. (2006) that 

the outer boundary condition can be the solution of the 

Rayleigh equation at y > 0.3, for all cases of wall 

turbulence, where y is scaled by the outer length scale. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Growth curve ++
icα  versus +α (inner 

variable scaling), Reynolds Number (R) for 

channel flow is 5000. Solid squares are the 

results from the experiments discussed below. 

 

     Figure 1 shows the solution of equation 2.  We see 

that a wide range of unstable wave numbers (α+ = 0.03 
to α+ = 0.18) exists. The curve is virtually identical for 
boundary layer flow and channel flow.  It is also 

insensitive to the location at which the outer boundary 

condition is applied provided it is larger than one third 

the boundary layer thickness (or channel height).  This 

agrees very well with the physics of high Reynolds 

number wall flows.  Several other features, like the 

location of the production peak, agree well with 

standard measurements. 

     In case of the compliant wall, the normal velocity 

components from fluid side and solid side are equated. 

Further, the resultant velocities for the tangential no-

slip conditions at the interface are also equated. Both 

these conditions are appropriately combined to give the 

first boundary condition. The second boundary 

condition is found by equating admittance from the 

fluid side (Y) and to that of solid side ( 0Y ).  Details 

may be seen in Sen and Arora (1988). 

 

3. EXPERIMENTS 
     Measurements were made in a 2D channel specially 

designed for the purpose of this experiment. The half-

width of the channel, H, is 0.04m, the spanwise extent, 

1.08m and the test section is 12.2m long. The walls 

(vertical) of the tunnel are made of 12mm thick float 

glass (each piece 1.22m by 2.44m).  A 4.8:1 2D 

contraction, followed by a small diverging section (to 

ensure rapid transition) is present upstream of the test 

section. The organized disturbance is generated by a 

speaker and introduced into the flow through a slot of 

1mm width and 0.15m length, centered in the spanwise 

direction. A schematic diagram of the set up and the 

coordinate system used is shown in figure 2. 
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Fig. 2: Schematic diagram of the set-up used  

     for experiments, showing the location of the  

     speaker and the coordinate system in use. 

 

     Pressure measurements were made with a Debro 

micromanometer (resolution 0.01mm) and velocity 

measurements were made with a boundary layer hot 

wire probe (5µm dia.) connected to a Dantec 56C17 

hot-wire anemometer and 56N20 signal conditioner.  

The probe was positioned with the help of a travelling 

telescope fitted with a dial gauge of 1µm resolution.  

Using this arrangement the distance from the wall 

could be measured to an accuracy of 0.01mm.  Since 

the wire is at least 0.1mm away from the wall in all the 

measurements, this accuracy is adequate. 

     Great care was taken to ensure that the set-up is 

adequately conditioned for stability work in a turbulent 

environment. The development length prior to the 

introduction of the organized disturbance is 244H and 

the aspect ratio of the test section is 27.  These values 

are large enough to ensure that well upstream of the 

speaker we have fully developed turbulent flow and 

that it remains two-dimensional in the central region 

(greater than 0.4m), throughout the test section (c.f. 

Hussain & Reynolds 1975).  The flow quality in the 

setup was carefully tested especially in the vicinity of 

the slot. We note that skin friction measured here 

agreed to within 0.5% with the data reported in Hussain 

& Reynolds (1975). The two dimensionality of the 

disturbance at the exit of the slot and further 

downstream was also carefully checked and found to 

be satisfactory. 

     For the measurements being reported here the 

average velocity was maintained at approximately 

5.3m/s, which corresponds to a Reynolds number of 

13,200, based on the half width of the channel.  The 

friction velocity 
*
u  was measured to be 0.28m/s.  

Phase averages have been obtained over 11,000 cycles 

at each location. 

In keeping with the theory presented above, the 

organised disturbance u% , may be expressed as: 

 

{ }1 ( )

2
ˆ( ) c.c.

x ct
u u y e

ια −
= +%            (3) 

 

where, ˆ( )u y is the eigenmode. In theoretical work 

usually α is taken to be real and the complex wave 

speed c is obtained as an eigen value. Positive ci thus 

indicates instability. However, in experiments, it is the 

circular frequency β = α c that is real and both α and c 
are complex.  Thus in the experiments the spatial 

growth rate is given by –αi and the equivalent temporal 

growth rate is –αicgr, where, cgr is the group velocity.  
However, our calculations show that the wave speed is 

nearly constant over the range of wave numbers of 

interest, thus, the group velocity is the same as the 

phase velocity.  Hence, the equivalent temporal growth 

rate in the experiments may be estimated as –αicr. 
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200

y+

u
+

x+ = 170

x+ = 160

x+ = 141

x+ = 122

 

Fig.  3: Evolution of the normalized eigenmode û
+
, 

with distance from the slot. The speaker frequency has 

been set at 300Hz which corresponds to β+
 = 0.385.  

The distance from the slot has been specified in wall 

units in the legend and it corresponds to a variation 

from 7mm to 10mm.   

 

     Figure 3 shows the evolution of the eigenmode û
+
, 

non-dimensionalised by inner variables. The speaker 

was excited at a frequency of 300Hz, which 

corresponds to β+ = 0.385.  This value was chosen so as 
to be close to the most unstable wave according to 

S&V2.  The four locations (x = 7mm, 8mm, 9mm and 

10mm) shown here, correspond to an x
+
 range of 

approximately 120-170. The data clearly show that the 

inner peak grows rapidly between x=7mm and x=9mm 

after which it appears to saturate.  Beyond x=10mm, the 

eigen mode is found to decay (results not shown here), 

with the inner peak moving outwards.   

    The eigen mode (especially at x=10mm) matches the 

calculations of S&V1 and S&V2 quite well both 

qualitatively and quantitatively.  Typical results of the 

calculations for channel flow are shown in Figure 4, 

wherein, û
+
and v̂

+
 are reported for a wave number 

close to that of the experiments.   

     The vertical scale in Figure 4 is arbitrary and has 

been chosen to permit easy comparison with the 

experimental results. The peaks in the calculations are 

a little closer to the wall as compared to the 

experimental peaks, however, the ratio of the two 

peaks is very close to that observed in the experiment 

at x = 10mm. 
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Fig.  4: Calculated eigenmodes û
+
and v̂

+
, 

for channel flow at a Reynolds number of 

5000.  α+
 = 0.057; cr

+
 = 5.39 and ci

+
 = 1.05. 

 

     The fact that the secondary (outer) peak reduces as 

we proceed from x=7mm to x=10mm, is probably 

indicative of a competition between two modes initially.   
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Fig. 5: Evolution of the inner peak of û
+
in the 

channel flow experiment. The disturbance 

frequency was set at 300Hz. 

 

     Figure 5 shows the evolution of the inner peak in 

the experiments.  One observes a period of rapid 

growth followed by a somewhat slower decay.  From 

the figure both the growth and decay appear to be 

exponential.  From the growth of the inner peak and the 

phase of the eigen mode one can estimate α and c 
as:

0.015; 0.067; 1.24; and 5.5
i r i r

c cα α+ + + +
= − = = =

If this is compared with the results of S&V2 it is found 

that the data here falls almost on the 

vs.c
i

α α+ + +
curve.  This can be seen in figure 1 

wherein the above datum and those from two other 

runs with different disturbance frequencies are shown 

as solid squares.  Such a remarkable match compels us 

to conclude that the growth phase is indeed exponential 

and according to the theory presented in S&V1 and 

S&V2, and that this growth is followed by non-linear 

saturation and decay.  However, when the 

measurements were repeated with a smaller disturbance 

amplitude (results not shown here) the point of 

saturation was observed to be the approximately the 

same, thereby ruling out the conjecture of non-linear 

saturation.  This indicates that the phenomenon is more 

complex than it appears at first glance.  More detailed 

investigations are underway. 

     For completeness we also include spectral 

measurements here. Figure 6a shows the compensated 

one-dimensional spectra )(11 fFf (where f is the 

frequency) obtained at different distances away from 

the wall for a downstream distance of 10mm (x
+
 = 174) 

and a disturbance frequency of 300Hz.  The organized 

disturbance appears as a clearly distinguishable spike, 

at the disturbance frequency, in these spectra.  We note 

that as expected the spike lies on the energy containing 

range.  The variation of the magnitude of the spike is 

consistent with the egienfunction plot shown in Figure 

3. 
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Fig. 6a: Evolution of the peak in the spectrum    

at different distances from the wall. 
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  Fig. 6b: Evolution of the peak in the longi- 

tudinal power spectrum. Disturbance 

frequency 300Hz (approx.) y
+
 = 9. 

 

     Figure 6b shows spectra for the same disturbance 

frequency taken at a fixed distance from the wall 

(0.52mm, y
+
 = 9).  Again the spike is clearly visible 

and it is seen to grow and then decay as the 

downstream coordinate increases from 7mm to 10mm 

< 

< 

^ 

^ 

< 



 (x
+ 
= 122  to x

+
 = 174 ).  It is noteworthy that it is only 

the amplitude that changes, while the width of the spike 

remains constant as expected. 

    This behavior must be contrasted with the evolution 

of a spectrally local disturbance in isotropic turbulence 

studied experimentally by Kellogg & Corrsin (1980) 

and numerically by Orlandi & Crocco (1985).  In both 

those studies the spike rapidly decayed accompanied 

by spreading of the width. 

 

 

4. KLEBANOFF MODES 
 

4.1 Elucidating the vorticity source    
     Both Fasel (2002) and ourselves have been using 

vorticity sources derived from fictitious body forces to 

generate streaklike structures.  Hitherto, however, we 

had little idea what form the vortical structures 

generated by these forces took.  Considering, first, the 

simple case of a uniform flow, with this approach the 

governing equation for streamwise vorticity takes the 

form: 

 

xztFsxxsyyGg
Dt

xD
ωνβδ

ω 2
cos)()()( ∇+−−=     (4) 

 

where the LHS term is the material derivative; (x,y,z) 

are, respectively, the streamwise, wall-normal and 

spanwise coordinates; G is a constant source strength ; 

(xs, ys) are the source coordinates; δ is a delta function;  
g  = δ in our work but Fasel uses g  = dδ/dy;  F(t) = H(t) 
– H(tf)  where H is the Heaviside step function; and ν is 
kinematic viscosity.  If viscous effects are neglected 

the solution is  

 

0
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−−=

z
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x

ω

βω
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     Thus we can see that in our case of a δ function 
source a simple vorticity sheet is generated which has 

alternating sign of vorticity in the spanwise direction.  

Fasel’s source produces a somewhat more complex 

(double-δ vorticity sheet).  In the case of the laminar 

boundary layer when the source is placed just above 

the edge of the boundary layer, the vortex sheet models 

the zero- and low-frequency streamwise vortical 

structures in the free stream.  Kudar (2006), Kudar et al. 

(2005,2006) have shown that the laminar boundary 

layer is only receptive to very low-frequency 

streamwise vorticity and not at all to freestream 

spanwise vorticity. 

     When such a vorticity source is inserted in to a 

turbulent boundary layer (Ali & Carpenter 2005), the 

structures it generates model the hairpin vortices seen 

in the near-wall region.  It is these that generate the 

sublayer streaks. 

     It is evident from eq. (5) that a very strong narrow 

shear layer will form around y = ys, so we cannot really 

neglect viscous effects.  We can drop ∂2ωx/∂x
2
on the 

RHS of eq. (4) because it is higher order.  For x >> xs a 

quasi-self-similar steady state solution can be found 

that takes the form: 
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This follows from the identity 
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Fig. 7: Un-normalised wall-normal velocity 

profile created in uniform flow by Fasel (2002) 

double-δ vorticity source. 
 

     The Poisson relation between vorticity and stream 

function, namely 

 

x
yz

ω
ψψ

−=
∂

∂
+

∂

∂
2

2

2

2

                                                (7) 

 

is then combined with eqs. (4) and (6) to derive a 

fourth-order ODE for ψ that is solved numerically to 

give the velocity field.  Fig. 7 shows the (un-

normalized) wall-normal velocity profile for the Fasel 

source.    

     Essentially the boundary-layer is driven by the wall-

normal and spanwise velocity field of the streamwise 

vortex sheet created by the vorticity source.  A 

corresponding quasi-similar solution can be derived 

within the boundary conditions at the wall; this is also 

required to match the uniform-flow solution.  The 

composite wall-normal and streamwise velocity 

profiles are depicted in Fig 8 and 9 respectively.  These 

composite solutions agree well with the numerical-

simulation results given in Fasel (2002). 

 



 
Fig. 8:  Composite wall-normal velocity profile 

corresponding to Fasel (2002) 

 

 
Fig. 9:  Composite wall streamwise velocity profile 

corresponding to Fasel (2002) 

 

 

 

4.2  Non-linear interaction between Klebanoff 
modes and 2D TS waves in laminar boundary 
layer: 

Let the flow perturbation variables be written as: 

 

φ = (u,v,w,p)                                             (8) 

 

then we consider a scenario whereby 

 

φ = φ1+φ2+φ3                                                   (9) 

 

where,                 
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1
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corresponds to the Klebanoff mode whose solution was 

described above; 
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corresponds  to the 2D TS wave which we will also 

regard as known; and 
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corresponds to the oblique waves generated by the 

nonlinear interaction between  φ1 and φ2.   
 

The governing equation for 3ν̂   can be derived from the 

Navier-Stokes equations and takes the form: 
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where Los  is the Orr-Sommerfeld operator and the 

forcing term 
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3γ α β= +                                                             (14) 

 

The solution to eq. (13) consists of the 

complementary function, 
3
~v  (the solution or eigen 

function of the homogeneous equation) plus a particular 

solution of the form 
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where the first term is the secular term and the second 

the non-secular forced solution.  Eq.(13) can now be 

written as  
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where L2 is an operator the form of which follows from 

the governing equation. Using the theory of adjoints as 

in Sen et al. (2002,2006) the solvability condition gives 

                                            

3 3 2 3 3
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/ ( )fR dy L v dyλ θ θ α
∞ ∞
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where θ3 is the adjoint eigenfunction.  Since  Rf    varies 
as the amplitude of the streak,  λ   is proportional to  

the streak strength.  For weak streaks, i.e.   λ  << 1, 

this only results in a correction to the eigen value                     

of the form 

     2 3
3

( )i x
i e

α α
α λ

−
∆ = −                                          (18) 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10:  Algebraic growth due to K (streaks) +2D TS 

+3D TS waves interacting for laminar damped case.    

 

     The difference in the real parts of the wave-numbers 

contributes a change of phase while the difference in 

imaginary parts leads to amplification or attenuation 

depending on its sign.  This means that while 

propagating along the boundary layer ∆α3  varies in 

magnitude owing both to phase and amplitude change.  

Hence, the effect is amplifying over short distances 

giving the intermittent bursting observed by Fasel (2002) 

in his simulations.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11:  Preliminary results for algebraic growth due to 

K (streaks+2D TS+3D TS waves interacting for 

turbulent 

 

For stronger streaks leading to large λ   the 

behaviour is qualitatively different because explosive 

algebraic growth can exist owing to the existence of the 

secular solution.  We have demonstrated numerically 

that both scenarios are plausible and would expect 

algebraic growth to start to dominate when u1 ≥ 0.1 U∞. 

A typical result for algebraic growth for a laminar 

damped case is given in Figure 10. The spatial problem 

has been solved for a laminar boundary layer with the 

following input data (normalised by the free-stream 

velocity and boundary-layer thickness): R = 1500, ω = 

0.4, β = 0.2. For this input we obtain eigenvalues α2 and 

α3 as:  

α2 = 0.48729 + i 0.002936 and α3 = 0.98256 + i 

0.00441142.  

     Corresponding to this | λ | = 0.15682, Figure 10 

shows algebraic growth corresponding to the above 

parameters, plotted to a free scale for the vertical co-

ordinate y. Also the x co-ordinate gives distance in x 

from the point of inception of algebraic growth. The 

function 
xiα

1 ex(x)f
−=  is the envelope of the 

algebraic growth curve xiα

r2 x)ecos(αx(x)f
−

= . Figure 

10 shows the full function with the spatial variation in x 

for the parameters above. Also x(x)f3 = shows the 

linear growth line corresponding to algebraic growth. It 

is seen that considerable algebraic growth occurs even 

though the mode is damped. 

     Figure 11 shows algebraic growth for an amplified 

turbulent mode with R = 5000, α = 31.0 and β = 17.90 

using the boundary-layer thickness and freestream 

velocity as length and velocity scales respectively.  This 

problem is investigated for algebraic growth in the 

temporal domain. The eigenvalues for the phase speeds 

c2 and c3, respectively for the 2D-TS and 3D-TS modes 

are given as: 

c2 = 0.350975 + i 0.00559564, c3 = 0.300454 + i 

0.00536667.  All the corresponding values in inner 

variables (superscripted by a (+) sign) are given as 

follows. 

R
+
 = 1, α

+ 
= 0.1088, β

+
 = 0.062832,  

+
2c = 6.1581 + i 0.98180; 

+
3c  = 5.2717 + i 0.09417. 

|λ | corresponding to this mode is 15.1838. 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12:  Preliminary results for algebraic growth due to 

K (streaks+2D TS+3D TS waves interacting for 

turbulent damped case. 
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and    t(t)f3 =  similarly as in figure 9, but this time 

for the temporal domain t. Clearly this figure shows 

algebraic growth, which is later superseded by 

exponential growth. 

     The next case is for a turbulent damped mode with R 

= 5000, α = 8.985, β = 17.90. The eigenvalues for a 

phase speeds c2 and c3, respectively for the 2D-TS and 

3D-TS modes are given as: 

 

c2 = 0.282756 - i 0.00152036, c3 = 0.187251 - i 

0.01185049. All the corresponding values in inner 

variables are given as follows: 

R
+
 = 1; α

+ 
= 0.03153; β

+
 = 0.062832; 

+
2c = 4.9611 - i 

0.026676;  

+
3c  = 3.2854 - i 0.208531. |

−

λ | corresponding to this 

mode is 2.6808.  In this case the mode is damped and 

the growth rate is given as αc2i = - 0.0136572 t.  

Figure 12 shows considerable algebraic growth 

before damping takes place. 

 

Thus we see that both scenarios—the 

intermittent bursting observed by Fasel (2002) and the 

explosive algebraic growth described above— are 

possible.  In both cases there is a low-frequency 

modulation with a period of approximately 36ν/Uτ
2
 

corresponding to the bursting cycle.  It is very close to 

the value of 36.6 measured by Klewicki et al. (1995) 

and of the same order of magnitude as the value of 80.5 

found by Rao et al. (1971) and the value of 72 measured 

by Kline et al. (1967). Kim and Spalart (1987)obtained 

a value of 60 in their direct numerical simulations.  Our 

preliminary analysis also shows that for a strong 

interaction between oblique waves and plane waves we 

need a  spanwise wavelength of approximately 100 wall 

units.  This agrees remarkably well with the streak 

spacing observed experimentally.  Finally, the angle of 

propagation for the oblique waves in our theoretical 

model is approximately 60
o
, close to that observed by 

Sirovich et al. (1990, 1991). 

 

 

 

5.  CONCLUSIONS 
     Fairly strong experimental evidence has been 

presented here for the theory outlined in S&V1 and 

S&V2.  The shape of the eigenmode, obtained 

experimentally, matches the calculated eigenmode well.  

In the region of growth of the inner maximum the 

experimentally observed wave number, wave speed, 

growth rate etc. are in good agreement with the 

theoretical values.  Thus we can claim that linear 

stability does provide a vital clue to the mechanism of 

sustenance of turbulence even in wall-bounded flows. 

     We have obtained a quasi-similar solution to the 

vorticity and stream function equations, in the presence 

of a free-stream body force, which reproduces the DNS 

results of Fasel (2002) almost exactly.  It has been 

shown further that the triadic interaction between the K- 

modes and 2D- TS and 3D-TS waves could lead to 

explosive algebraic growth.  This is most likely the 

mechanism of bypass transition.  A similar mechanism 

could exist in fully developed turbulent wall flows 

wherein streamwise vortices in the near-wall region take 

the place of the free-stream body force used in the 

laminar flow calculations.  The resulting K-modes and 

their interaction with 2D-TS and 3D-TS modes would 

lead to similar explosive growth (bursting), for which 

preliminary results have already been obtained.  Thus 

interfering with generation of the unstable 2D-TS waves, 

say by using compliant surfaces (see Sen and Arora 

(1988)), would quench this mechanism and help in the 

control of turbulence in wall-bounded flows. 
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