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1. INTRODUCTION 

Contact is necessary in any engineering application 
to transfer force and power hence it is almost an 
indispensable field of study. The elastic-plastic contact of 
a hemisphere with a rigid surface is a fundamental 
problem to study the major characteristics like localized 
deformation, the variation in the contact area, the contact 
force, displacement and the stress distribution in the 
deformable body. Much interest is devoted in the 
literature to the reverse case of indentation loading where 
a rigid sphere penetrates an elasto-plastic half space. It is 
worthy to emphasize that indentation and hemispherical 
deformation (this work) are significantly different in the 
elasto-plastic and fully plastic regimes. One of the 
earliest models of elastic asperity contact is that of 
Greenwood and Williamson [1]. This model uses the 
solution of the frictionless contact of an elastic 
hemisphere and a rigid flat plane, otherwise known as the 
hertz contact solution [2]. Some works are restricted to 
pure plastic deformation of the contacting sphere, based 
on Abbot and firestone [3]. The works on either pure 
elastic or pure plastic deformation of the contacting 
sphere overlook a wide intermediate range of interest 
where elastic-plastic contact prevails. An attempt to 
bridge this gap was made by Chang et al [4]. Zhao et al 
[5] used mathematical manipulation to smooth the 
transition of the contact load and contact area 
expressions between the elastic and elastic-plastic 
deformation regimes. Mathematical models are replaced 
using finite element model (FEM) concepts recently. 
Kogut and Etsion (KE) [6] used FEM concept and 
analyzed the evolution of the elastic-plastic contact with 

increasing interference revealing three distinct stages 
that ranges from fully elastic, elastic-plastic up to fully 
plastic (0 < ω* ≤ 110). The model provides dimensionless 
expression for contact area, contact load and mean 
contact pressure covering a large range of interference 
values. They inferred that their analysis is normalized in 
such a way that allowed a general solution, which is 
independent of specific material and radius of the sphere. 
A change in the behavior of the mean contact pressure 
was observed in their analysis at ω*=6, which marks the 
elastic limit of the contact area. To generalize their 
solution, the numerical solutions were normalized with 
respect to their corresponding critical values at yielding 
inception, ωc, the validity of this normalization was 
tested by solving the problem for several different 
material properties (100 < E/Y < 1000, ν = 0.3) and 
sphere radii (0.1 mm < R < 10 mm). Their results show 
that the entire contact zone is plastic when the 
dimensionless interference ratio (ω/ωc = ω*) is 68 and 
the rate of its radial expansion increases substantially. 
Moreover when ω/ωc = 110, the dimensionless mean 
contact pressure (p/Y) approaches the value of 2.8. This 
is identical to the ratio between the hardness and yield 
strength found experimentally for many materials as 
indicated by Tabor [7]. 

Kogut and Etsion [8] studied the maximum 
tangential load that can be supported by a normally 
preloaded elastic perfectly plastic spherical contact at the 
inception of sliding using an approximate semi analytical 
solution. Sliding inception was interpreted as a failure of 
the contact. They found that when the normal load is less 
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than the Hertzian critical load the failure occurs on the 
contact area. If the normal load exceeds that critical one, 
the failure occurs below the contact area. Brizmer et al. 
[9] analyzed and compared the ductile material yielding 
inception and the brittle material failure inception for two 
different contact conditions between a smooth elastic 
sphere and rigid flat and the effect of contact condition 
and material properties on the termination of elasticity. 
Jackson and Green (JG) [10] extended the KE model to 
account the geometry and the material effects in the 
analysis. They used finer mesh than the KE model and 
solved for five different yield strengths. They showed 
markedly different behaviors for the materials with 
different strengths in the transition from elastic-plastic to 
fully plastic deformations. For calculating the critical 
interference, they used material yield strength (Y) 
directly in their expressions. Their results show that the 
dimensionless mean contact pressure does not reach 2.8 
for most of the yield strength values. The JG solution 
used E/Y ratio of 952.4, 356.6, 219, 158.1 and 137.74 by 
varying the values of ‘Y’ with constant E = 200 GPa. 
They also analyzed the interference when plastic 
deformation first reaches the contacting surface at the far 
right end and the contact surface first becomes entirely 
plastic for yield strength of 1.619, 1.2653, 0.9115 GPa. 
Quicksall et al. [11] have taken five hypothetical material 
properties and studied the error of formulation for KE 
and JG model. The first test generated contact area and 
contact force data for five hypothetical metals with 
Poisson’s ratio, yield strength and elastic modulus typical 
of aluminum, bronze, copper, titanium and malleable cast 
iron. Non-dimensional interference between ω*=5 and 
ω*=250 were used to generate data in both the 
elastic-plastic and the plastic regimes except for 
aluminum at ω*=250 and malleable cast iron above 
ω*=10. Second set of tests generated non-dimensional 
contact area and contact force data for a generic material 
in which the elastic modulus and Poison’s ratio were 
independently varied with yield strength held constant at 
200 MPa. Firstly Poisson’s ratio was varied between 0.28 
and 0.36 with the elastic modulus held constant at 200 
GPa. Then the elastic modulus was varied between 160 
and 240 GPa with Poisson’s ratio held constant at 0.32. 
The dimensionless interference was set at ω*=20, 80 and 
250 for each test iteration. Jackson et al. [12] used mesh 
size same as that of JG model and presented results for a 
range of normalized interference ω*, from 0.571 to 171. 
Then the contact force, stress tensor, von mises stresses 
and the displacement in both the radial and axial 
directions were recorded. After loading conditions had 
been simulated; the solution was then restarted and 
unloaded completely to simulate the residual stresses and 
the displacements. In order to measure the effect of the 
material properties on the hemispherical deformation, 
both aluminum and steel sphere unloaded from ω*=135; 
they inferred that the deformation of the hemisphere is 
dependent on the properties of the material and the 
interference. 

Shankar and Mayuram (SM) [13] studied the 
evolution of elastic core and the plastic region within the 
asperity for different Y/E ratios. They varied the yield 
strength from 250 N/mm2 to 2250 N/mm2. E equals to 

2.07 x 105 N/mm2. The range of E/Y is from 83.333 to 
500. It was revealed from their analysis that higher 
dimensionless interference;ω* is required for the plastic 
region to just touch the contact surface when E/Y > 
166.66 and this ω* is varied with E/Y ratio. For E/Y< 
166.667, this ω* is constant and equals to 6. Same trend 
was observed for the entire contact surface to be in 
plastic. For E/Y > 166.66, the value of ω/ωc decreases 
with decrease of E/Y ratio. When E/Y ratio is less than 
166.66, the fully plastic contact condition exists at a 
constant interference ratio of 54. They studied the 
variation of mean contact pressure (p/Y) as a function of 
dimensionless interference ratio and observed that 
materials having low yield strength (i.e. when E/Y>300) 
produces results similar to the KE model but p/Y ratio 
never reaches 2.8. Malayalamurti and Marappan (MM) 
[14] analyzed the elastic-plastic behavior of a sphere 
loaded against a rigid flat in two region. One is when E/Y 
> 300, another when E/Y < 300. They observed that 
when E/Y<300, the fully plastic average contact pressure 
or hardness is not constant. However, the hardness and 
interference at the inception of fully plastic condition are 
constant for materials with E/Y>300. The present work 
aims to study the qualitative and quantitative contact 
characteristics of single asperity contact using 
commercial FEM software ANSYS. Analysis is carried 
out to study the effect of varying modulus of elasticity 
and sphere radius in wide range of dimensionless 
interference until the inception of plasticity as well as in 
plastic range. 
 

2. FINITE ELEMENT MODEL AND PROCEDURE 
 

 
 

Fig 1. Finite element mesh of a sphere generated by 
ANSYS 

 
To improve upon the efficiency of computation, an 

axi-symmetric 2-D model is used. The present study 
utilizes the commercial program ANSYS. The 
hemisphere is modeled by a quarter of a circle, due to its 
axisymmetry. A line models the rigid flat. The model 
refines the element mesh near the region of contact to 
allow the hemisphere’s curvature to be captured and 
accurately simulated during deformation. The model 
uses quadrilateral, four node elements to mesh the 
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hemisphere. The resulting ANSYS mesh is presented in 
Fig.1.The nodes on the axis of symmetry are fixed in 
radial direction. Likewise the nodes on the bottom of the 
hemisphere are fixed in both axial and radial direction. 
The bilinear isotropic hardening (BISO) option in the 
ANSYS program is chosen to account the elastic-plastic 
material response for the single asperity model. The rate 
independent plasticity algorithm incorporates the von 
Mises criterion. Tangent modulus is assumed as zero for 
validating the results with other elastic perfectly plastic 
models. The KE model uses a maximum of 2944 nodes 
and JG model uses a constant of 11,101 elements for their 
analysis. However the present work uses a maximum of 
11069 elements for the radius of 1 mm. The mesh density 
is iteratively increased until the contact force and contact 
area differed by less than 1% between iterations. In 
addition to mesh convergence, the model also compares 
well with the Hertz elastic solution at interferences below 
the critical interference. This work uses Lagrangian 
multiplier method. The tolerance of current work is set to 
1% of the element width.  

There are two ways to simulate the contact problem. 
The first applies a force to the rigid body and then 
computes the resulting displacement. The second applies 
a displacement and then computes the resulting contact 
force. In both methods, the displacement, stress, and 
strain can be determined as well as the contact pressure. 
In this work the latter approach is used. This method is 
used because the resulting solution converges more 
rapidly than the former. In this work contact parameters 
are normalized using the JG model’s expression for 
critical interference (ωc), critical load (Pc) and critical 
contact area (Ac) to form dimensionless parameters. 
Thus,  
ωc = (πCY/2E/)2R                                                          (1) 

Pc = (4/3)(R/E/) 2.(CπY/2) 3                                            (2) 

Ac = π3(CYR/2E/) 2                                                        (3) 

Where C=1.295 exp(0.736ν) 

E/ is defined as  

1/E/ = (1-ν1
2)/E1+(1-ν2

2)/E2                                                         (4) 

where E1, E2, and ν1, ν2, are Young’s moduli and 
Poisson’s ratios of the two materials, respectively. In case 
of the rigid flat,  E2→∝. The dimensionless parameters 
are as follows:ω*=ω/ωc,  P*=P/Pc, A*=A/Ac . 
 

3. NUMERICAL RESULTS AND DISCUSSION  
 
The results of the finite element model are presented 

for a variety of interferences. The materials selected 
cover steel, grey cast iron and aluminum used in 
engineering applications. While yield strength and 
Poisson’s ratio are held constant, four different elastic 
modules (E) are chosen. They are 70, 80, 103, 200 Gpa. 
 

 
 

Fig 2. Dimensionless mean contact pressure versus 
dimensionless interference for E/Y > 300. 

Fig 2 represents the results of the mean contact 
pressure to yield strength ratio (p/Y) as a function of 
dimensionless interference ratio (ω/ωc) obtained from 
the finite element analysis. Here the study is made with 
constant yield strength (Y) and Poison’s ratio (ν). The 
values of which are taken as 0.21 GPa and 0.32 
respectively. With the variation of elastic modulus 
different E/Y ratios are obtained. Thus the E/Y ratios are 
333.31, 380.95, 490.476 and 952.4 for the elastic 
modulus of 70, 80, 103, 200 GPa respectively. The range 
of ω/ωc is from 100 to above 500. It is revealed from Fig 
2 that when E/Y>300; the trend obtained is similar to the 
JG [10] model with small changes in magnitude. JG 
inferred that a material with higher Y has less mean 
contact pressure in plastic range. Here material with 
higher E has higher mean contact pressure as the 
dimensionless interference increases in the plastic range. 
MM [14] concluded the material independent behavior 
for E/Y > 300. They had taken the average results of four 
materials. Moreover they modeled the material of the 
sphere as an elastic linear hardening material A 1% linear 
hardening was selected for their work. The present work 
modeled the material of the sphere as an elastic perfectly 
plastic material and the results entirely deviate from their 
result as mean contact pressure to yield strength ratio (p 
/Y) never reaches 2.8. Fig 3 shows the variation of 
dimensionless contact load as a function of 
dimensionless interference, when E/Y is greater than 300. 
The result indicates the similarity with Quicksall et al. 
[11] findings. With the increased modulus of elasticity 
(E) the value of dimensionless load increases in the 
plastic range. 

Dimensionless contact area as a function of 
ω*(dimensionless interference) is plotted in Fig 4. The 
values for dimensionless contact area continue to 
increase with interference even past fully plastic 
condition. For the contact area all the models follow the 
same general trend, but they differ only in magnitude. 
The result shows that the dimensionless contact area is 
independent of E when E/Y>300.  
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Fig 3. Dimensionless contact load as a function of 

dimensionless interference for E/Y > 300. 
 

 
 

Fig 4. Dimensionless contact area as a function of 
dimensionless interference for E/Y >300. 

 

 
 

Fig 5. Dimensionless mean contact pressure as a function 
of dimensionless interference for E/Y< 300. 

 
Study is also made for the materials of E/Y< 300. 

For this case Y is taken as 1.619 GPa, with constant 
Poisson’s ratio of 0.32.With four E values of 70, 80, 103 
and 200 GPa the corresponding E/Y ratios are 48.178, 
54.972, 71.0315 and 137.739 respectively. These values 

are well below 300. The behaviors of these materials in 
elastic as well as in elastic-plastic ranges are also 
analyzed. The average contact pressure to yield strength 
ratio is plotted in Fig 5 as a function of dimensionless 
interference (ω*). It is clearly evident from the plot that 
dimensionless mean contact pressure does not reach the 
value of 2.8 even if for steel with E = 200Gpa. There is a 
decrease in mean contact pressure after reaching its peak 
value, though the peak value is dependent on E. As the 
value of E is increasing peak mean contact pressure also 
is high. There is a similarity of the trend with the findings 
of MM [14]. But MM inferred that peak value would 
reach after the dimensionless interference of 90 only. 
Present work observed that the peak value of mean 
contact pressure in all the cases occurred well below the 
dimensionless interference of 90. It can be seen from the 
figure 5, the location at which the mean pressure attain its 
peak value and the magnitude is entirely dependent on 
modulus of elasticity (E) of the material. 

Fig. 6 represents the plot of dimensionless load (P*) 
versus ω*. It is clear from the figure that for different 
value of E up to the inception of fully plastic contact the 
trend is linear with marginal change in magnitude. This is 
similar to the prediction of KE [6]. This trend is not 
observed in higher interference ratio. Fig. 7 represents 
the plot of dimensionless contact area with ω*when E/Y 
< 300.The FEM results from this study indicate that 
dimensionless contact area decreases slightly with 
increased elastic modulus of elasticity. Same trend was 
observed by Quicksall et al. [11].  

 
Fig 6. Dimensionless contact load versus dimensionless 

interference for E/Y < 300. 
 

When interference increases, the elastic core 
completely disappears and the fully plastic region 
reaches the contact surface as shown in fig 8; thus the 
transition to the fully plastic state occurs. KE model 
predicted this transition limited to specific dimensionless 
ratio of 68. JG [10] and SM [13] predicted that this ratio 
at which this transition occurs is not constant. In the 
present work it is observed that this ratio is dependent on 
E. As the value of E increases the dimensionless ratio at 
which the transition occurs is also increasing. There is no 
indication of constant value for the present four E/Y ratio 
though SM also observed a constant value of 54 when 
E/Y<166.66. Fig 9 is the plot of ω* versus E/Y where it is 
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clear that in the present domain of work SM 
overestimates the current work marginally. The present 
work also studied the values of dimensionless contact 
load, contact area and mean contact pressure with 
different sphere radii, the study is made with radii of 1, 2, 
and 3 mm. No significant deviation is observed. Thus it 
can be inferred that earlier mentioned dimensionless 
contact characteristics are independent of the sphere 
radius.  

 
Fig 7. Dimensionless contact area versus dimensionless 

interference for E/Y < 300. 
 

 
 

Fig 8. Inception of fully plastic contact 
 

 
 

Fig 9. End of elastic-plastic region based on the 
disappearance of elastic core. 

4. CONCLUSIONS 
The present work considers 2D axi-symmetric finite 

element model of an elastic perfectly plastic hemisphere 
in contact with a rigid flat surface. A comparison is also 
made with other existing models. The material is 
modeled as elastic perfectly plastic, and yielding occurs 
according to the Von Mises criterion. It has been clearly 
shown that the dimensionless mean contact pressure ratio 
is not constant at 2.8 in the plastic range but dependent on 
modulus of elasticity whether E/Y is greater or lesser 
than 300. But the peak value (i.e. maximum mean contact 
pressure ratio), the dimensionless interference at which 
this value occurs, the trend of changing is dependent on 
E/Y ratio. Dimensionless contact area, contact load also 
depends on modulus of elasticity. But dimensionless 
contact load, contact area and mean contact pressure is 
independent of changing radius of sphere. The 
development of the elastic core and the transition to the 
plastic region within the surface for the wide range of 
interference is studied using Von Mises stress. It is 
observed that the dimensionless interference ratio at the 
instance when the plastic region fully covers the surface 
is dependent on the values of modulus of elasticity when 
other properties are kept constant. 
 
5. NOMENCLATURE 
 

Symbol Meaning Unit
P Contact load N
R Radius of the sphere mm 
p Pressure GPa 
ω Interference μm 
A Contact area μm2

E Modulus of Elasticity GPa 
Y Yield strength of sphere GPa 
ν Poison’s ratio  

 

5.1 Subscripts 
      c = critical values 

5.2 Superscripts 
      / = equivalent 
      * = dimensionless 
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