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1. INTRODUCTION 
     Surface interactions are dependent on the contacting 
materials and the shape of the surface. The shape of the 
surface of an engineering material is a function of both its 
production process and the nature of the parent material. 
When studied carefully on a very fine scale, all solid 
surfaces are found to be rough. So when two such 
surfaces are pressed together under loading only the 
peaks or the asperities of the surface are in contact and 
the real area of contact is only a fraction of the apparent 
area of contact. In such conditions the pressure in those 
contact spots are extremely high. Accurate calculation of 
contact area and contact load are of immense importance 
in the field of tribology and leads to an improved 
understanding of friction, wear, and thermal and 
electrical conductance between surfaces. But it is a 
difficult task as rough surfaces consist of asperities 
having different radius and height. The problem is 
simplified when Hertz [1] provides the contact analysis 
of two elastic solids with geometries defined by 
quadratic surfaces. From then the assumption of surfaces 
having asperities of spherical shape is adopted to 
simplify the contact problems and the elastic plastic 
contact of a sphere and flat becomes a fundamental 
problem in contact mechanics. Greenwood and 
Williamson [2] used the Hertz theory and proposed an  
 

 

asperity based elastic model where asperity heights 
follow a Gaussian distribution. The first plastic model  
was introduced by Abbot and Firestone [3] which 
neglects volume conservation of the plastically deformed 
sphere. The first model of elasto-plastic contact was 
proposed by Chang et al. [4]. In CEB model the sphere 
remains in elastic contact until a critical interference is 
reached, above which the volume conservation of the 
sphere tip is imposed. The CEB model suffers from a 
discontinuity in the contact load as well as in the first 
derivative of both the contact load and the contact area at 
the transition from elastic to elastic-plastic region. Later 
Evseev [5], Chang [6] and Zhao et al. [7] have made 
attempt to improve the elasto-plastic contact model. 
     Kogut and Etsion [8] (KE Model) first provide an 
accurate result of elastio-plastic contact of a hemisphere 
and a rigid flat. Kogut and Etsion used a finite element 
method to study the evaluation of the plastic zone in 
elastic-plastic contact between a sphere and rigid flat 
under frictionless contact condition. They study it for a 
wide range of material properties and sphere size and 
provide generalized empirical relations for contact area 
and contact force in terms of  dimensionless contact 
interference for elastic, elastic-plastic and fully plastic 
region. They also studied their model for tangent 
modulus up to 0.1E and found negligible effect of it’s in 
the contact parameters. Similar analysis has been done 
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by Jackson and Green [9] (JG Model). In JG model they 
incorporated variation of material property (e.g. 
Hardness) on deformed geometry and presented some 
empirical relations of contact area and contact load. 
Kogut and Etsion [10] developed a statistical contact 
model based on the results of KE model [8]. Jackson and 
Green [11] have also done similar reaserch. Quicksall et 
al. [12] used finite element technique to model the 
elasto-plastic deformation of a hemisphere in contact 
with a rigid flat for various materials such as aluminum, 
bronze, copper, titanium and malleable cast iron. They 
also studied the contact parameters for a generic material 
in which the elastic modulus and poisson’s ratio were 
independently varied with the yield strength held 
constant and all the results are compared with the results 
of KE and JG Model. Brizmer et al. [13] have done 
elastic-plastic contact analysis between a sphere and 
rigid flat under perfect slip and full stick conditions for a 
wide range of material properties using FEM. According 
to the literature review contact analysis of a deformable 
sphere with a rigid flat using FEM has done by several 
researchers and some of these studies consider the effect 
of material properties. But the effect of strain hardening 
on contact of deformable sphere and rigid flat in a 
detailed way is still missing. The present work aims to 
study the effect of strain hardening for single asperity 
contact for different values of hardening parameter 
which is related to the tangent modulus.  

2. FINITE ELEMENT FORMULATION 
     The contact of a deformable hemisphere and a rigid 
flat is shown in figure 1 where the solid and dashed lines 
represent the situation before and after contact 
respectively of the sphere of radius R. The figure also 
shows the interference (ω) and contact radius (a) 
corresponding to a contact load (P). The contact of 
deformable sphere with a rigid flat is modeled using 
finite element software ANSYS 10.0. Due to the 
advantage of simulation of axi-symmetric problems the 
model is reduced to a quarter circle with a straight line at 
its top. 

 
Fig 1. A deformable sphere pressed by a rigid flat.  

 

……………………………………………………………………………………………………………………………… 

 
 

Fig 2. Meshed model of the hemispherical contact 

……………………………………………………………………………………………………………………………. 

 
    The quarter circle is divided into two different zone, 
e.g., zone I and zone II. Here zone I is within 0.1R 
distance from the sphere tip and zone II is the remaining 
region of the circle outside zone I. these two zones are 
significant according to their mesh density. The mesh 

density of zone I is high enough for the accurate 
calculation of the contact area of the sphere under 
deformation. Zone II has a coarser mesh as this zone is 
far away from the contact zone. The meshed model is 
shown in figure 2. The resulting mesh consists of 12986 
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no of PLANE82 and 112 no of CONTA172 elements. 
Here the arc of the circle represents the deformable 
contact surface and the straight line is the rigid flat.  
 
 

 
 
Fig 3. Stress-strain diagram for a material having bilinear 

isotropic properties 
 
The nodes lying on the axis of symmetry of the 
hemisphere are restricted to move in the radial direction. 
Also the nodes in the bottom of the hemisphere are 
restricted in the in the axial direction due to symmetry. 
The sphere size is used for this analysis is R = 0.01 mt. 
the material properties used here are Young’s Modulus 
( E ) = 70 GPa, Poission’s Ratio (ν ) = 0.3 and Yeild 
stress ( yσ ) = 100 MPa. Here a frictionless 
rigid-deformable contact analysis is performed. In this 
analysis a bilinear material property, as shown in figure 3, 
is provided for the deformable hemisphere. To study the 
strain hardening effect we have taken different values of 
tangent modulus ( tE ).The Tangent Modulus ( tE ) is 
varied according to a parameter which is known as 

Hardening parameter and defined as, 
t

t

EE
E

H
−

= . The 

value of H is taken in the range 5.00 ≤≤ H as most of 
the practical materials falls in this range. The value of 
H equals to zero indicates elastic perfectly plastic 
material ( tE ) behavior which is an idealized material 
behavior. The hardening parameters used for this 
analysis and their corresponding values are shown in 
Table 1. The wide range of values of tangent modulus is 
taken to make a fair idea of the effect of strain hardening 
effect in single asperity contact analysis. The solution 
type is chosen as large deformation static analysis. Here 
we have applied displacement on the target surface and 
the force on the hemisphere is found from the reaction 
solution. As this is an axi-symmetric analysis the force is 
calculated on a full scale basis. The radius of contact area 
is found from the last activated node for a particular 
analysis. In our analysis we have validated our mesh 
configuration by iteratively increasing the mesh density. 
The mesh density is increased by 1% until the contact 
force and contact area is differed by less than 1% 
between the iterations. In addition to the mesh 

convergence the model also compared with the Hertz 
elastic solution. The results of contact load are differed 
by maximum 3% and contact radius by not more than 5% 
below the critical interference. 
 
 
Table 1: Different H and Et values used for the study of 

strain hardening effect 
 

H Et  in %E Et (GPa) 

0 0.0 0.0 

0.1 9.0 6.3 

0.2 16.7 11.7 

0.3 23.0 16.1 

0.4 28.6 20.0 

0.5 33.0 23.1 

 
 
3. RESULTS AND DISCUSSION  
     As discussed earlier the strain hardening effect is 
studied by varying the hardening parameter which in turn 
changes the value of tangent modulus while other 
material properties are kept constant. The model is 
validated by comparing the results for elastic perfectly 
plastic material condition, i.e. for 0=H , with the results 
of KE model [8]. The results are normalized according to 
the following normalization scheme. Interference is 
normalized by the critical interference, provided by 
Chang et al. [4]. The critical interference is defined as, 

R
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KS
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πω  

where, K is the hardness coefficient 
[ ν41.0454.0 +=K ], S is the hardness of the material,  
according to Tabor [14] S  is related to yield strength 
by yS σ8.2= and *E is the equivalent young’s 

Modulus, )1/( 2* ν−= EE in this case [ E  is the young 
modulus and ν  is the poisson’s ratio of the deformable 
body]. The contact load is normalized according to 
critical contact load, i.e., load corresponding to critical 
interference and written as, 

  2/32/1*

3
4

cc REP ω=  

The contact area is normalized according to critical 
contact area, i.e., area corresponding to critical 
interference and written as, 
  cc RA ωπ=  

The results for elastic perfectly plastic material behavior 
are compared with the results of Kogut and Etsion. The 
calculated contact areas are exactly matched in the elastic 
and certain portion of the elastic plastic region and we 
found a maximum of 1% difference with the results KE 
model. In case of load vs. displacement we found there is 
a maximum of 3% difference with the results of KE 
model. Figure 4 and 5 shows the comparison of the 
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load-interference and contact area-interference for the 
present case and the KE model.  
 

 
 

Fig 4. Plot of contact load vs. interference for elastic 
perfectly plastic material 

 
 
 

 
 

Fig 5. Plot of contact area vs. interference for elastic 
perfectly plastic material. 
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Fig 6. Plot of von-mises stress for (a) ω = ωc, (b) ω = 6ωc, 
(c) ω = 68ωc and (d) ω = 110ωc 

 
The possible reason of this differences in the results is 
may be due to the fact that Kogut and Etsion have done 
this analysis for a large no of sphere radius in the range of 

101.0 ≤≤ R (mm.) as well as for a large no of material 
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properties in the range 1000)/(100 ≤≤ yE σ  and they 
also found differences in their results up to 3%. Among 
all those results they provided the generalized one. Here 
we are representing the different contact conditions at 
different interference by means of stress contours of the 
deformed asperity. We found slightly higher values of 
interferences for the initiation of plastic and fully plastic 
deformation and as the differences are marginal, can be 
neglected. Von mises yield criterion is used to find the 
initiation of plastic deformation and fully plastic region 
is found when the mean pressure reaches the hardness 
value. The contour plots of von mises stress for different 
interference values are shown in figure 6.  
    The effect of strain hardening effect in single asperity 
contact is studied for materials having different values of 
tangent modulus with the other material properties are 
taken as constant. Here we have studied it for an applied 
interference range of cc ωωω 20010 ≤≤ . Figure 7 
shows the variation of contact load at different 
interference for materials having different values of 
tangent modulus. The plot shows a non linear behavior in 
between the load and interference as the results are in the 
elasto-plastic and fully plastic region. Similar non linear 
behavior is found in between contact area and 
interference which is shown in figure 8. These plots show 
that up to a certain value of non-dimensional interference 

)10/( =cωω the effect of strain hardening on contact 
parameters become negligible. Here we found below this 
value the variations of results are in the range of 2-5% 
from that of elastic perfectly plastic material behavior. 
But a significant effect of strain hardening on contact 
parameters for higher interference values is found. It is 
also found that a small amount of stain hardening (with in 
2% of E ) helps in convergence of the solution and the 
results are quite close to the results of elastic perfectly 
plastic case. The variation of hardening parameters 
shows that for a small hardening parameter 1.0=H  the 
results of load and contact area varies 3-15% and 5-17% 
respectively from the results of elastic perfectly plastic 
case with in the elasto-plastic region, i.e. 

cc ωωω 11010 ≤≤ . For fully plastic region, i.e., 

cωω > these variations are quite high and increase 
monotonically with the increase in interference. While 
for the large hardening parameter 5.0=H the variation 
in load and area are in the range of 11-52% and 5-33% 
respectively from that of elastic perfectly plastic case in 
the elasto-plastic region. In fully plastic region these 
variations are significantly high and increase 
monotonically with the increase in interference. 
     Figure 7 also shows that with the increase in tangent 
modulus value the contact load increases at a particular 
interference value. This clearly indicates that the 
resistance to deformation of a material increases with the 
increase in tangent modulus value. Figure 9 shows the 
variation of contact area at different applied load for 
materials having different values of tangent modulus. 
The figure shows a non linear behavior in between 
contact area and contact force. Here it is observed that 
the contact area decrease at a particular load for a 
material having higher tangent modulus value than that 
of a material having lower one. This indicates that with 

the increase in the effect of strain hardening the material 
can support the same applied load in a smaller contact 
area. 
 

 
 
Fig 7. Plot of Contact Load vs. interference for materials 

having various Et values. 
 

 
 
Fig 8. Plot of Contact Area vs. Interference for materials 

having different Et values. 
 
 

 
 
Fig 9. Plot of Contact Area vs. Force for materials having 

different Et values. 
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4. CONCLUSIONS  
     The result of strain hardening effect clearly shows that 
a generalized solution can not be applicable for all kind 
of materials as the effect of strain hardening greatly 
influenced the contact parameters. With the increase in 
the value of hardening parameter this effect also 
increases. Thus for a particular material this parameter 
should be taken care appropriately to get the accurate 
prediction of contact load and contact area. It is also 
observed that a small amount of strain hardening 
improves the solution convergence. It is noticed that in 
the elasto-plastic region up to a certain interference 
value )10( c=ω strain hardening have negligible effect 
on the contact parameters. If we assume that the material 
has very low hardening parameter, i.e. 1.0≤H , the effect 
of its quite small and can be neglected with marginal 
error in the elasto-plastic region but a significant effect of 
its is found in fully plastic region that can not be 
neglected. For higher value of hardening parameter the 
effect of strain hardening is severe on contact parameters. 
With the increase in strain hardening the resistance to 
deformation of a material is increased and the material 
becomes capable of carrying higher amount of load in a 
smaller contact area. 
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