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1. INTRODUCTION 
     Due to widespread applications, the analysis of 
rotating disk behavior has been of great interest to many 
researchers. Assuming linear strain hardening material 
behavior, Gamer [1-2] reported the elasto-plastic 
behavior of rotating disk of constant thickness using 
Tresca’s yield criterion and its associated flow rule. 
Güven [3-4] carried out the analysis of rotating solid disk 
with variable thickness up to fully plastic state for 
linearly strain hardening material behavior. Based on 
both Tresca’s and von-Mises yield criterion, Rees [5] 
investigated the elasto-plastic behavior of rotating disks 
of uniform thickness made of elastic-perfectly plastic 
material and reported the comparative results. You and 
Zhang [6] presented an approximate analytical solution 
for rotating solid disk of uniform thickness with plane 
stress assumption for non-linear strain hardening 
material behavior based on von-Mises yield criterion, 
deformation theory of plasticity and a polynomial 
stress-strain relationship. Based on similar assumptions, 
You et al. [7] developed a unified numerical method to 
report the elasto-plastic behavior of rotating disk of 
varying thickness made up of non-linearly strain 
hardening material. A unified yield criterion was 
proposed by Ma et al. [8] to report the plastic limit 
angular velocity and stress distribution in fully plastic 
state of rotating disks with variable thickness.  
     Eraslan and Orcan [9] obtained an analytical solution 
of elasto-plastic deformation field of rotating solid disks 
with exponentially varying thickness using Tresca’s yield 
criterion and its associated flow rule for linear strain 
hardening material behavior. Eraslan and Orcan [10] 
extended the study for disks where, yielding initiates not  
at the centre but at an intermediate radial location. 

 
 
Eraslan [11] studied the inelastic behavior of variable 
thickness rotating solid disks with linear strain hardening 
material behavior using both Tresca’s and von Mises 
yield criterion.  
     Elasto-plastic behavior of rotating disks of variable 
thickness in power function form for both linear and 
non-linear strain hardening material behavior had been 
studied by Eraslan and Argeso [12] using von Mises 
yield criterion. In another research paper [13], Eraslan 
carried out the elasto-plastic analysis of rotating solid 
and annular disks with elliptical thickness variation and 
made of linearly hardening material using both Tresca 
and von-Mises criteria. The application of variational 
method, proposed by Bhowmick et al. [14] has yielded a 
generalized approach to study the behavior of rotating 
solid disks of variable thickness in the elastic regime. In 
another paper, the method has been further extended into 
elasto-plastic domain [15]. 
     In the present study, a numerical method based on 
variational principle for elasto-plastic analysis of rotating 
variable thickness disks using von Mises yield criterion 
has been proposed. A solution algorithm has been 
developed to obtain an approximate solution of the 
unknown displacement field from the governing set of 
equations in an iterative manner.  
  
2. MATHEMATICAL FORMULATION 
     The centrifugal loading on a rotating disk produces 
radial and tangential strain field, which in turn produces 
stresses. The present analysis is carried out based on the 
assumptions that material of the disk is isotropic and 
homogeneous and a state of plane stress exists in the 
loaded condition. Stress-strain relation of the disk is 
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linear elastic followed by linear strain hardening as 
shown in Fig. 1. In case of two-dimensional stress, the 
general condition of yielding based on von-Mises theory 
is given by, 2 2 2

1 1 2 2 yσ σ σ σ σ− + = , where yσ  is the 

uniaxial yield stress value of the disk material and vmσ  
is the von-Mises stress. At a certain speed, known as 
elastic limit angular speed (Ω1), the stress field of the 
disk exceeds the yield limit value, thus giving rise to a 
plastic front. On further increase in rotational speed, a 
certain region of the disk attains post-elastic state and 
when this region encompasses the entire disk we get 
plastic limit speed or collapse speed (Ω2). The present 
method captures the location of plastic front numerically 
by using an iterative method. 
 

 
 

Fig 1. Linear elastic linear strain hardening material 
behavior. 

 
      For a uniform thickness disk the yielding initiates at 
the root.  As a result the disks are made thicker near the 
hub and the thickness is reduced towards the periphery 
which results in variable thickness disks having higher 
elastic limit angular speeds. On varying the geometry it is 
observed that maximum stresses at elastic limit angular 
speed (ω1) may occur at locations other than the root of 
the disk. Under such a situation,  initiation of yielding 
occurs at location away from the root (r = ry).With 
increasing angular speed, the centrifugal load on the disk 
increases and the plastic front originated at r = ry starts to 
spread in two directions; towards the root as well as the 
periphery. At such load increment (ω = ω1+Δω), the 
plastic region spans between r = ri to r = ro. Further load 
increment gives rise to two possibilities depending on the 
geometry parameters. Firstly the plastic region may 
collapse at the root before reaching the periphery or 
secondly the plastic region may reach the periphery 
before reaching the root. The angular speed at which the 
plastic front reaches either root or periphery is designated 
as 1

iω  and 1
oω  respectively. Additional load increments 

cause the disk to attain a fully plastic state and the 
corresponding plastic limit angular speed is designated as 
ω2.  
     Variational principle based on minimization of total 
potential energy functional states that   
 

0)( =+VUδ     (1) 
where, i o

e p eU U U U= + + , i.e., total strain energy, U  

consists of two elastic { ( )i
eU  and ( )o

eU } and a plastic 

( )pU  part, V  is the potential of the external forces and 

δ is the variational operator . The interface between the 
inner elastic and the intermediate plastic region is 
demarcated by the radius ir r=  and that between the 
plastic region and the outer elastic region is demarcated 
by the radius or r= . The variation of elastic part of strain 
energy (for ir a to r r= = ) is given as,  
 

( )
ir

i
e 2

a

2π E uδu du duδ U = +νuδ +ν δu
1-μ r dr dr

du du            +r δ hdr
dr dr

⎧ ⎛ ⎞
⎨ ⎜ ⎟

⎝ ⎠⎩
⎫⎛ ⎞
⎬⎜ ⎟

⎝ ⎠⎭

∫   (2) 

      
     Similarly the variation of elastic part of strain energy 
(for or r  to r b= = ) is given as,  
 

( )
o

b
o

e 2
r

2π  E uδu du duδ U = +νuδ + ν δu
1-μ r dr dr

du du            + r δ hdr
dr dr

⎧ ⎛ ⎞
⎨ ⎜ ⎟

⎝ ⎠⎩

⎫⎛ ⎞
⎬⎜ ⎟

⎝ ⎠⎭

∫
   (3) 

 
Based on Hencky’s deformation theory of plasticity the 
variation of post elastic part of strain energy (for irr =  

to 0rr = ) is given by,  
 

pUδ   ( )r t
vol

dU dU dvδ
⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫   (4) 

where, rdU  and tdU are the contributions coming from 
radial and tangential stresses and strains and are given as  
 

0 0 01 1
2 2

p p p
r r r r r r rdU σ ε σ ε σ ε+= +                  (5a) 

0 0 01 1
2 2

p p p
t t t t t t tdU σ ε σ ε σ ε+= +                           (5b) 

 
From the stress-strain compatibility relations and 
strain-displacement relations it is known that 
       

( ) ( )
0 0 0 0 0 0

2 2
,

1 1r r t t t r
E Eσ ε νε σ ε νε
ν ν

⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦− −
     

( ) ( )
1 1

2 2
,

1 1
p p p p p p

r r t t t r
E Eσ ε νε σ ε νε
ν ν

⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦− −
 

0 0,p p
r r t t

du u
dr r

ε ε ε ε= − = − , where the super-script 0 

refers to the state of initiation of yielding, 
 
     Substituting the abovementioned relations in the 
expressions of dUr and dUt the final expression for pUδ  
is obtained as  
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     (6)                    

 
The variation of the potential of the external forces is 
given by,  

∫−=
b

a
druhr   V )(2)( 22 δωρπδ         (7) 

The normalization of Eqs (2, 3, 6 and 7) is carried out 
with four parameters ( 1 2, ,Δ Δ Δ and 3Δ ) and four 

normalized coordinates ( 1 2, ,ξ ξ ξ and 3ξ ), 

where b aΔ = − and ( )r aξ = − Δ , ari −=Δ1  and 

( )1 1
r aξ = − Δ ,                  irr −=Δ 02  and 

( )2 i 2
r rξ = − Δ , 03 rb −=Δ  and ( )3 o 2

r rξ = − Δ  

     The global displacement field ( )u ξ  is approximated 
by co-ordinate functions ( ) i iu cξ φ≅∑ , i=1, 2,…, n, 

where φi is the set of orthogonal functions developed 
through Gram-Schmidt orthogonalization scheme. The 
necessary starting function to generate the higher order 
orthogonal functions is selected by satisfying the relevant 
boundary conditions (

0
0

r
u

=
=  and 0r r b=

σ = ), of a 
rotating solid disk in elastic regime. For an annular disk 
boundary conditions become ( 0==arrσ  and 

0r r b=
σ = ). To facilitate computation, displacement 
functions in the elastic and post-elastic regions are 
expressed as 1

1 2
e p

i i i iu( ) c ,u( ) cξ φ ξ φ≅ ≅∑ ∑  and 
2

3
e

i iu( ) cξ φ≅∑  respectively.  
     On substituting the normalized expressions 
of    i o

e p e(U ), (U ), (U ), (V ),δ δ δ δ in Eq. (1), 
replacing the displacement field with assumed 
co-ordinate functions and replacing operator δ  by 

/ jc∂ ∂ , the governing set of equations is obtained in 
matrix form as follows: 
 

1 11
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In the above equation )( ′  indicates differentiation with 
respect to normalized coordinates. It should be noted 
further that he mathematical formulation is presented in 
generalized form, to be applicable both for solid and 
annular disks. However, in the present study the case of 
solid disks are only considered by setting 0=a . 
 
2.1 Solution Algorithm 
     The governing Eq. (8) can be expressed in matrix 
form as, [ ]{ } { }K c f= , where [K] is the stiffness matrix 
and {f} is the load vector and the required solution of 
unknown coefficients { }c  is obtained numerically by 
using an iterative scheme. A brief description of the 
solution algorithm is provided below. 
1. Solve for limit angular speed [14] and initiate three 

loops. 
2. Start the outer (first) loop and increase the 

rotational speed through a suitable step size, 
( 1 1Ω +ΔΩ ). 

3. Start intermediate (second) loop and give 0r a small 
increment. 

4. Start inner (third) loop and give ir a small 
increment. 

5. The ratio of 0
tσ  and 0

rσ in the elastic region is 
constant for a particular radial location. This ratio 
(k) is stored during elastic analysis. Whenever yield 
front expands at a particular radial location, the 
values of 0

tσ  and 0
rσ  at that point can be obtained 

as follows (considering that up to yield point the 
ratio k is maintained): 

( )

( )

1
2 2 2

1
2 2     1

vm t r t r

r k k

σ σ σ σ σ

σ

= + −

= + −
 

6. Obtain the displacement field using the 
elastic-plastic formulation of Eq. (8) and post 
process to check whether von Mises stress attains 
the value of yield stress at the yield front location.  

7. If the condition in step 6 is true within the set error 
limit then current position is the exact yield front 
location and go to step 2. 
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8. If the condition in step 6 is not satisfied, go to step 3, 
refine the increment on 0r  and continue the 
iterative process. 

 
3. RESULTS AND DISCUSSIONS 
     The results are presented in terms of the following 
dimensionless and normalized variables:  radial 
coordinates ξ =r/b, angular velocity / yΩ bω ρ σ= , 

stress / yσ σ σ= , displacement / yu uE bσ=  and 

hardening parameter ( )1 1/H E E E= − . The results are 
generated using b=1.0m, ρ =7850 kg/m3, E=210 GPa 
and yσ =350 MPa. The value of poisson’s ratio ν  is 
taken as 1/3 unless otherwise stated. For the validation 
purpose, the value of  ν  is taken as 0.5 in post-elastic 
region. Validation of the numerical scheme is presented 
for disks with uniform and elliptical thickness variation 
whereas results are presented for disks of exponential 
thickness variation. The mathematical expressions for 
thickness variations are defined below: 
 

0( ) exp[ ]kh h nξ ξ= −  for exponential disk, 
2

0( ) 1h h nξ ξ= −  for elliptical variation. 
      
     Here, n, k are the parameters defining the geometry 
and 0h is the thickness at the root. From the above 
expressions, disk of uniform thickness is obtained for n = 
0.0. The disk profiles treated in the present study are 
shown in Fig. 2 (a-b). In Fig. 2 (a), the profile of uniform 
disk and elliptical disk is illustrated. In Fig. 2 (b) profile 
of exponential disks for different geometry parameters is 
shown.  
 

 

        
(a)            (b)  

Fig 2. Disk profiles with geometry parameters 
 

Table1: Validation of results on 2Ω  
 

Geometry Parameters 
2Ω  

Present 
method 

Existing 
results

Uniform n=0.0 2.13726 2.11747 [11] 
Elliptical n=0.7 2.28764 2.25761[13] 

 
     Results for linear strain hardening material behavior 
have been generated using H =0.5. A validation on the 
plastic limit angular speed Ω2 is carried out and the 
results are presented in Table 1. The plots for normalized 
displacement   and   normalized   radial   and   tangential  

 
 

 
 

Fig 3. Validation of normalized displacement and 
normalized radial and tangential stresses at Ω2  for  

(a) Uniform disk and (b) Elliptical disk. 
 

 
 

Fig 4. Propagation of elastic-plastic interface for 
Uniform and Elliptical disk. 

      
stresses at the plastic limit speed Ω2 obtained by the 
present study for uniform and elliptical disk is presented 
in Fig.3 (a, b).  In Fig.4, the propagation of elastic-plastic 
interface  radius  with  angular  speed  is  plotted  for  an  
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 Fig 5. Propagation of elastic-plastic interface for 
Exponential disk (D1) at 2Ω = 2.5213 

 

 
 

 
 
Fig 6. Normalized displacement, radial, tangential and 

von-Mises stresses for Exponential disk (D1) at 
(a) 1

iΩ =2.4621 and (b) 2Ω = 2.5213 
 
 

 

 
 

Fig 7. Propagation of elastic-plastic interface for 
Exponential disk (D2) at 2Ω = 2.8372 

 

 
 

 
 
Fig 8. Normalized displacement, radial, tangential and 

von-Mises stresses for Exponential disk (D2) at 
(a) 1

oΩ =2.7948 and (b) 2Ω = 2.8372   
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elliptical disk and is validated with the results available 
in [13]. These plots exhibit very good agreement 
establishing validity of the present elasto-plastic analysis 
method. 
      The displacement and stress state of exponential disk 
is investigated next. The geometry parameters (n =2.0, k 
=0.8 (D1) and n =2.8, k =1.0 (D2)) are selected to ensure 
yielding at locations away from the root. Furthermore, 
for disk type D1, the yield front propagates in a manner 
to reach root first and then the periphery, whereas for disk 
type D2 the yield front reaches periphery first. 
     For disk type D1, the dimensionless angular speed 
( 1

iΩ ) at which the yield front reaches the root is 2.4621. 

The fully plastic state is attained at 2Ω = 2.5213. In Fig.5 
the propagation of elastic-plastic interface is plotted 
against increasing speed. The corresponding normalized 
radial, tangential and von Mises stresses and normalized 
displacement at 1

iΩ  and Ω2 for disk type D1 is plotted in 
Fig. 6(a, b). 
     For disk type D2, the dimensionless angular speed 
( 1

oΩ ) is 2.7948 and the fully plastic state is attained at 

2Ω = 2.8372. The propagation of elastic-plastic interface 
is plotted against increasing speed in Fig.7 for disk type 
D2.  The corresponding normalized radial, tangential and 
von Mises stresses and normalized displacement at 1

oΩ  
and Ω2 is plotted in Fig. 8(a, b). 
 
 
4. CONCLUSION 
     The present work gives an approximate solution in the 
elasto-plastic region of a solid rotating disk of varying 
thickness assuming linear strain hardening material 
behavior following von Mises yield criterion. The results 
obtained by the present methodology have been validated 
and it showed a close conformity with the existing results 
of similar problem.  
     Some new results for displacement field and radial, 
tangential and von Mises stress field at plastic limit speed 
for exponential disks yielding at locations away from the 
root for linear strain hardening material behavior have 
been furnished and plots showing the bi-directional 
advancement of the plastic front with increase in 
rotational speed have been presented. 
     The method of formulation readily gives the kernel 
for dynamic analysis and many other complicating 
effects. The results are presented graphically so that they 
become designer friendly. The method developed has 
application potential in various other problems, e.g., 
shrink fitted rotating disk, pre-stressed rotating disk, 
compound disk made from different materials, etc. 
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