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1. INTRODUCTION 
      Thin-walled structural components, made of 
isotropic or composite materials are increasingly used in 
high performance engineering applications and are 
subjected to hostile environment, resulting in a strong 
need to understand their nonlinear dynamic behaviour. 
Extensive literature review on the geometrically 
nonlinear flexural vibration characteristics of circular 
cylindrical shells and shell panels is given by Amabili 
and Paıdoussis [1]. The flexural vibration characteristics 
of shell type of structures are complex due to the 
asymmetric oscillation with respect to the un-deformed 
middle surface. The mid-surface gets compressed while 
deflecting inward (towards the center of curvature), 
while the mid-surface is subjected to tensile in-plane 
stress when deflecting outwards. It is observed from the 
existing literature, that the assumed space-mode 
analytical methods are widely used by different 
investigators while studying the geometrically nonlinear 
flexural vibration characteristics of curved panels [2-5]. 
Extensive theoretical and experimental studies on the 
large amplitude flexural vibration characteristics of 
cylindrical and doubly-curved panels are reported by 
Amabili [6-8]. The nonlinear strain-displacement 
relationships from Donnell’s shell theory and 
Novozhilo’s shell theory were employed. A multi-mode 
expansion with assumed approximate time functions was 
employed to obtain the nonlinear governing equation 
with finite degrees of freedom, which was solved by 
arc-length continuation method to investigate the  

 
flexural vibration characteristics of such panels. 
     Numerical techniques, such as finite element method, 
overcome the limitations of assumed space-mode. 
However, the selection of appropriate time function and 
determination of a steady-state periodic solution of the 
differential equations with quadratic and cubic 
nonlinearity is a challenge to the researchers working in 
the area of nonlinear dynamics of composite shells.  
Ribeiro [9-11] employed p-version finite element with 
hierarchic basis functions and harmonic balance method 
to get the equation of motion in frequency domain, which 
was solved by predictor-corrector method [9] or 
arc-length continuation method [10] for nonlinear free 
vibration or by shooting and Newton’s method [11] for 
nonlinear forced vibration of shell panels. A strong 
modal interaction with even and odd harmonics was 
observed in the geometric nonlinear vibration, which was 
characterized by time plots, phase planes and Fourier 
spectra. Few nonlinear transient analyses of shell panels 
are available in the literature [12-14]. However, further 
study is required to understand the steady-state periodic 
and asymmetric vibration behavior of curved panels 
under transverse dynamic load.   
     In the present paper a sixteen nodded shell finite 
element [15] is employed to study the nonlinear free 
flexural vibration behavior of shallow composite 
cylindrical panels. Time function is assumed for the 
nonlinear equation and Galerkin’s method is employed to 
obtain the nonlinear frequencies of vibration. Dynamic 
response of curved panels is also obtained by Newmark’s 
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direct time integration method. The effect of boundary 
condition and curvature on the large amplitude vibration 
characteristics of composite cylindrical panels is 
investigated in details.  
 
2. FORMULATION  
     A sixteen noded degenerated isoparametric finite 
element is employed here to model a circular cylindrical 
shell panel of constant thickness h, radius R, axial length 
L,  having plan-form width a and rise H as shown in Fig 1 
(a). The sixteen-noded shell element is schematically 
shown in Fig 1(b). The normal to the mid-surface at node 
“k” at any time “t” is defined by the unit vector k

n
tV .  

ktV1  and ktV2  are two unit vectors orthogonal to k
n

tV .  
    Each node “k” has five degrees of freedom namely; u1, 
u2, u3, α and β. The mid-surface displacement 
components u1 and u2 are along the unit vectors kV1

0  and 
kV2

0   respectively; and u3 is the normal displacement 

along k
nV0 . The changes in the direction cosines of the 

shell normal, given by k
nV  (= k

n
k

n
t VV 0− ) may be 

expressed in terms of nodal rotations (α and β) about the 
two vectors kV1

0  and kV2
0  as [15, 16]  
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    The linear ( ije ) and nonlinear ( ijη ) components of 

the Green-Lagrange strain tensors DI
ijε  = ( ije  + ijη ) 

may be written in terms of displacement components ui (i 
= 1, 3) as 

( )j,ii,jij uue +=
2
1

 and 

 jkikij uu ,,2
1

=η ;   k = 1, 3    (2) 

Here, the strain components are obtained by direct 
interpolation using the finite element displacement 
assumptions. The coordinate system is defined 
element-wise by the element isoparametric coordinates. 
The normal strain component ε33 is zero. To avoid the 
shear and membrane locking phenomenon, 
mixed-interpolated elements are constructed by using the 
assumed strain-fields AS

ijε  in place of DI
ijε .  The 

covariant strain components AS
ijε  are defined as 

( ) ( ) ( )∑
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ij
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where, the ( )srN ij
k ,  are interpolation functions 

(polynomials in r and s) associated with the strain 
component ijε  at tying point k and nij is the number of 

tying points as described in Bathe [16].  For a composite 
laminate of thickness h, comprising N layers with 
stacking angles θi (i = 1,2, ….., N) and layer thicknesses 
hi (i = 1,2, ….., N), the necessary expressions to compute 

the stiffness coefficients are available in the literature 
[17].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Following standard procedure (Lagrange’s equation of 
motion), the nonlinear equation of equilibrium of the 
cylindrical shell panel under periodic transverse load 
may be written as  
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Here, K is the linear stiffness matrix; M is the mass 
matrix; KN1 and KN2 are the nonlinear stiffness matrices, 
linearly depend on transverse displacement w; and KN3 is 
the nonlinear stiffness matrix, which is a quadratic 
function of transverse displacement w. The subscripts 
‘m’ and ‘b’ correspond to membrane (u1, u2) and bending 
(u3, α  and β) components of the degrees of freedom and 
corresponding mass and stiffness matrices respectively. 
 
3. LARGE AMPLITUDE FREE VIBRATION 
For the case of large amplitude vibration of shell panels, 
the vibration amplitude (win) towards the center of 
curvature is more than the corresponding amplitude in 
the outward direction (wout), as schematically shown in 
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(b) Geometry of 16 node shell 

Fig 1. The geometry of a cylindrical panel and the shell 
element. 
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Fig 2. Hence, the displacement components in the inward 
(towards center of curvature) and outward direction may 
be individually expressed as 
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Fig 2. Schematic diagram for the large amplitude 
oscilation of a cylindrical shell panel. 
 
 
     Here, the total time period “T” is divided between the 
time taken “T1 = π/θ 1” for the inward motion and time 
taken “T2 = π/θ 2” for the outward motion (as 
schematically shown in Fig 2). For the case of free 
vibration, the strain energies ( )inU δ   and ( )outU δ  for the 
inward and outward vibration amplitudes should match, 
i.e., 
                           ( )inU δ  = ( )outU δ   (7) 
    Substituting the assumed solutions (5, 6) into the 
governing equation (4) and evaluating the weighted 
residual along the path 
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The matrix amplitude equations (8a, b) are solved 
separately to get the vibration mode shapes { }T

inbm δδ ,  or 

{ }T
outbm δδ ,  corresponding to inward (win) and outward 

(wout) vibration amplitudes. Thereafter, the vibration 
amplitudes (win and wout) are adjusted iteratively to 
satisfy equation (7). Further, a time history analysis is 
carried out starting from the initial condition { }T

outbm δδ , , 
obtained from the equation (8b) to get the time history of 
central displacement, strain energy and kinetic energy of 
the shell panel. 
 
 
4. RESULTS AND DISCUSSIONS 
     Large amplitude free flexural vibration characteristics 
of thin isotropic and laminated composite cylindrical 
panels of constant thickness h, radius R, axial length L 
and plan-form width a (as shown in Fig 1) is considered 
here. The non-dimensional material properties, unless 
specified otherwise, used in the present analysis are EL / 
ET = 40.0, GLT / ET = 0.6,   GTT / ET = 0.5, and νLT = 0.25, 
where, E, G, and ν are Young’s modulus, shear modulus 
and Poisson’s ratio respectively. Subscripts L and T 
represent the longitudinal and transverse directions with 
respect to fiber directions. The ply-angles are measured 
from the circumferential direction to the fiber direction. 
All the layers are of equal thickness.  
          
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The efficacy of the present element for linear free         
vibration analysis of composite cylindrical panels has 
been tested earlier [15] and the same is not presented here 
for the sake of brevity. 16 node MITC shell element has 
good convergence property for both thin and thick panels 
and a 4×4 mesh is chosen to model the cylindrical panels. 
The different boundary conditions considered in the 
present analysis are: 
 

Fig 3. The time history of central displacement (wc/h),
strain energy and kinetic energy of an isotropic simply
supported (SS1) cylindrical panel at different amplitudes
of vibration. (R/a = 10, a/h = 100, L/a = 1). 
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Simply supported cases:   
All edges simply support (SS1):  u1 = u2 = u3 = 0 along 
the boundary nodes 
Straight edges simply supported, curved edges free 
(SS2): u1 = u2 = u3 = 0 at x1 = 0, a 
Clamped case: (CC1) 
u1 = u2 = u3 = α = β = 0   along the boundary nodes 
 
    At the beginning, the large amplitude free flexural 
vibration characteristics of a simply supported (SS1) thin 
isotropic cylindrical shell panel (R/a = 10, a/h = 100, L = 
a) are studied from a time history analysis. The nonlinear 
mode shapes { }T

bm δδ ,  are obtained from the 
matrix-amplitude equation (8b) corresponding to 
different amplitudes of vibration (wout/h). Thereafter, a 
dynamic response analysis is performed starting from the 
initial condition { }T

bm δδδ ,=  and the variation of 
non-dimensional central displacement (wc/h), strain 
energy and kinetic energy with time is presented in Fig 3. 
The strain energy and kinetic energy are evaluated using 
the non-dimensional material properties (E = 100000.0 
and ν = 0.3) and divided by 100, while plotting with the 
central displacement (wc/h) in Fig 3.  
  
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    From the figure, it is observed that the response is 
approximately steady-state. In addition, a smooth 

exchange of the strain energy and kinetic energy (strain 
energy + kinetic energy is constant) is noticed during the 
vibration cycle. Hence, it appears that, the vibration 
mode shapes obtained from equation (8b) is 
approximately correct, which is further investigated in 
detail. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
    The nonlinear dynamic response curves and 
corresponding phase plots of simply supported (SS1) 
isotropic cylindrical panels are shown in Fig 4 and Fig 5 
for radius-to-thickness ratio (R/a) of 10 and 20 
respectively. Time history analysis is also repeated for a 
cylindrical shell panel (R/a = 10) with SS2 boundary 
condition, (i.e., straight edges simply supported and 
curved edges are free) and the corresponding dynamic 
response along with phase plots are reported in Fig 6.  
    The vibration mode shapes in the outward and 
corresponding inward directions of an isotropic 
cylindrical panel (R/a = 10, a/h = 100) are shown in the 
Fig 7 and Fig 8 for two different boundary conditions 
SS1 and SS2 respectively. From the time response curves 
and the mode shapes, the following major observations 
are made 
• The maximum transverse deflection in the inward 

direction (towards center of curvature) is more 
compared to outward displacement (wout/h). The 
difference between the inward and outward 

Fig 4. Nonlinear response curves and phase plots of a 
simply supported (SS1) isotropic cylindrical panel
(R/a = 10, a/h = 100, L/a = 1) at different amplitudes
of vibration. 
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Fig 5. Nonlinear response curves and phase plots of a
simply supported (SS1) isotropic cylindrical panel (R/a
= 20, a/h = 100, L/a = 1) at different amplitudes of
vibration. 
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displacements (win – wout) increases with the increase 
of amplitude of vibration. For example, the inward 
vibration amplitudes are 0.92h, 1.348h and 1.747h 
corresponding to the outward displacement of 0.6h, 
0.8h and 1.0h respectively for a simply supported 
(SS1) cylindrical shell panel with R/a = 10. 

• For low amplitudes of vibration, the mode shape is 
symmetric and maximum displacement occurs at the 
center (wmax = wc). The vibration response is steady 
state. Hence, a harmonic time function assumption of 
the transverse displacement in equation (6) appears to 
be reasonable. 

• With the increase of vibration amplitude, the mode 
shape becomes un-symmetric with the maximum 
displacement shifts away from the center (wmax > wc). 
The steady state nature of the vibration gets slowly 
disturbed. This disturbance is more for the panel with 
R = 10a compared to the panel with R = 20a. Further, 
the disturbance is more for SS2 boundary condition 
compared to SS1 boundary condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Next, the variation of maximum transverse 
displacements in the inward (win) and outward (wout) 
directions of thin simply supported (SS1) isotropic 
cylindrical panels with the total disturbing energy (strain 
energy + kinetic energy) is studied in Fig 9 for four 
different values of radius of curvature (R/a = 8, 10, 20 
and infinite, i.e., plate). It is observed that, the vibration 

amplitudes (win and wout) increase with the increase in 
disturbing energy, followed by a sudden jump in the 
outward displacements associated with a change in 
deflection shape 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    Finally, the nonlinear free vibration behaviors of thin 
(a/h = 100) angle-ply [450/-450/450/-450/450] simply 

Fig 6. Nonlinear response curves and phase plots of
simply supported (SS2) isotropic cylindrical panel
(R/a = 10, a/h = 100, L/a = 1) at different amplitudes
of vibration. 
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Fig 7.  Vibration mode shapes for the outward and the
corresponding inward directions of a thin simply
supported (SS1) isotropic cylindrical panel (R/a = 10,
a/h = 100, L/a = 1).
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supported (SS1) and clamped (CC1) cylindrical shell 
panels of square plan-form (L/a = 1) are studied in Fig. 
10 for different values of radius of curvature (R/a). The 
nonlinear frequency ratio (ωNL/ωL) increases with the 
increase of vibration amplitude (win/h) for the case of flat 
plate. This degree of hardening nonlinearity decreases 
with the increase of curvature (decrease of radius of 
curvature). For the case of cylindrical panels with 
radius-to-span ratio 10 and 20, the frequency-amplitude 
relation initially shows a softening behavior. But, at 
higher amplitudes of vibration, this softening behavior is 
transformed to hardening behavior. The 
frequency-amplitude relationship for the clamped 
cylindrical panel is qualitatively similar to those of 
simply supported panels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 10. Effect of curvature on the non-linear vibration 
frequencies of simply supported and clamped (CC1) 
angle-ply [450/-450/450/-450/450] thin cylindrical panel 
(a/h = 100, L/a = 1). 
 
 
5. CONCLUSIONS 
     Large amplitude flexural vibration characteristics of 
isotropic and composite cylindrical panels are 
investigated here using a shear deformable finite element 
approach. The “vibration amplitude versus disturbing 
energy” and “vibration amplitude versus nonlinear 
frequency” relationships are studied using approximate 
matrix-amplitude equation obtained from single 
harmonic approximation to the asymmetric vibration. 
The present qualitative numerical results are examined 
thoroughly by a time history analysis. The time history 
and corresponding phase plots offer a good 
understanding of the nonlinear vibration characteristics 
of composite cylindrical panels.  
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