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1. INTRODUCTION 
     Most of the lightweight FRP structures are susceptible 
to large vibration with long decay time and thus require 
suitable integration of active control means to show 
better performance under operation. Piezoelectric 
materials integrated with such structures can act as 
sensors and actuators thus making the structure smart. 
This kind of smart structures could be used for active 
vibration control. At present, the linear quadratic 
regulator (LQR) control approach has been extensively 
used in vibration control with appropriate weighting 
matrices, which gives optimal control-gain by 
minimizing the performance index. Even though, trial 
and error method is used to select the weighting matrices, 
an optimal selection of weighting matrices is of 
significant importance from the control point of view. 
Some of the important works in this direction are 
presented in the following paragraph.  
Bhattacharya et al [1] used linear quadratic regulator 
(LQR) strategy for vibration suppression of spherical 
shells made of laminated composites by trial and error 
selection of [Q] and [R] matrices. Ang et al [2] proposed 
the use of total weighted energy method to select the 
weighting matrices. Narayanan and Balamurugan [3] 
presented finite element modeling of laminated 
structures with distributed piezoelectric sensor and 
actuator layers and applied LQR control scheme to 
control the displacement by trial and error selection of 
[Q] and [R] matrices. In recent years, genetic algorithm 
(GA) has been extensively applied for optimization of 
engineering problems and some of the important works 
on application of GA are described here. Binary coded 

GA has been applied by Han and Lee [4] to find locations 
of two piezoelectric sensors and actuators in a cantilever 
composite plate based on the open loop performance. 
Sadri et al [5] used Gray coded GA to find the eight 
coordinates of two piezoelectric actuators in a simply 
supported plate based on the open loop performance. 
Abdullah et al [6] used GA to simultaneously place 
collocated sensor/actuator pairs in multi-storey building 
while using output feedback as the control law in terms 
of minimizing the quadratic performance i.e. weighted 
energy of the system and concluded that the decision 
variables in this optimization problem were greatly 
dependent on the selection of weighting matrices [Q] and 
[R]. Robandi et al [7] presented the use of genetic 
algorithm for optimal feedback control in multi-machine 
power system. Deb and Gulati [8] presented simulated 
binary crossover (SBX) and parameter based mutation 
operator to be used for effective creation of children 
solutions from parent solutions. Yang and Soh [9] 
presented a simultaneous optimization method 
considering several design variables such as placement 
of collocated piezoelectric sensors/actuators and size of 
sensor/actuator and feedback control gain for vibration 
suppression of simply supported beam by minimizing the 
equivalent total mechanical energy of the system. 
However, they did not consider input energy in the used 
objective function i.e. equivalent total mechanical energy 
as such did not show the actuators voltages. Wang et al 
[10] addressed the topology optimization of collocated 
sensors/ actuators pairs for torsional vibration control of 
a laminated composite cantilever plate using output 
feedback control. Liu et al [11] used a spatial H2 norm of 
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the closed loop transfer matrix for finding the optimal 
nodal points for sensing displacement and applying 
actuation for the control of a fixed-fixed plate. Swann 
and Chattopadhyay [12] developed an optimization 
procedure to detect arbitrarily located discrete 
delamination in composite plates using distributed 
piezoelectric sensors.  
From the literature review, it has been observed that a 
number of works have been reported on the vibration 
control of simple beam or plate structures.. Most of the 
published work in this direction used LQR control 
scheme where  [Q] and [R] matrices have been chosen by 
trial and error, however choice of [Q] and [R] decides the 
optimal gain. Very few works discussed about actuation 
voltage while maximizing control performance. Keeping 
in mind the above points, the present work aims at 
developing a vibration control module of smart shell 
structures where the optimal controller will be designed 
based on a GA-LQR scheme, so that input /actuation 
voltage is kept within limit.      
 
2. FE FORMULATION AND LQR CONTROL 
     Figure 1 shows a smart laminated structure having 
two thin patches of piezoelectric material bonded on the 
top and bottom surfaces of the base structure. The control 
laws determine the feedback signal to be given to the 
actuator depending upon the sensor signal. In Fig.1, F(t) 
is the excited force, sφ  is the voltage generated by the 
sensor and aφ is the voltage input to the actuator in order 
to control the displacement by developing  effective 
control force.           

 
 

 Fig 1. Schematic of a smart laminated plate  
 
In the present formulation, the degenerate shell element 
[13] kinematics has been considered using a first-order 
shear deformation theory based on the Reissner–Mindlin 
assumptions. Figure 2 shows the general smart shell 
element with composite and piezoelectric layers. It has 
been assumed that the thin piezoelectric patches are 
perfectly bonded to the surface of the structure. 
In the isoparametric formulation, the coordinates of a 
point within an element are obtained as 
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Fig 2. Smart layered shell element.    
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  and hk  is the shell 

thickness at the node k.            
The displacement field is described by the five degrees of 
freedom of a normal viz. the three displacements of its 
mid-point ( )Tu v wk k k mid

 and two rotations ( )1 , 2k kβ β . The 
displacements of a point on the normal resulting from the 
two rotations are calculated as 

 
1 2

8 8 1
1 221 1 2
1 2

x xV Vk kuu k hk y y kv N v N V Vk k k k kk k kw w z zk V Vmid k k

β
ζ

β

⎡ ⎤−⎧ ⎫ ⎢ ⎥⎧ ⎫ ⎪ ⎪ ⎧ ⎫⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪
∑ ∑⎨ ⎬ ⎨ ⎬ ⎨ ⎬= + −⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= = ⎩ ⎭⎩ ⎭ ⎪ ⎪ ⎢ ⎥−⎩ ⎭ ⎣ ⎦

                    (2)                  

where , ,u v wk k k  are the displacements of node k on the 
mid-surface along the global directions respectively, 
and NK  is the shape function at kth node. Neglecting 
normal strain component in the thickness direction, the 
five strain components in the local coordinate system are 
given by 
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If { } { }1 2
Ted u v wk k k k k kβ β=  is the vector of nodal 

variables corresponding to thk  node of the element, the 
generalized nodal variables of an element { }ed  is 
expresses as { } { } { } { } { } { } { } { } { }1 2 3 4 5 6 7 8

T T T T T T T Te e e e e e e e ed d d d d d d d d
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 The 

strain displacement equation relating the strain 
components { }ε  in global coordinate system to the nodal 
variables { }ed  is expressed as 

{ } ( ) { } { }8

1

e e e eB d B du k ukk
ε ⎡ ⎤ ⎡ ⎤= =∑ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦=

                                                            (4) 

and the stress-strain relation in the global coordinate 
system is 
{ } [ ]{ }Cσ ε=                                                                                          (5) 

where { }
T

x y xy xz yzσ σ σ τ τ τ⎡ ⎤=⎢ ⎥⎣ ⎦
 are the stress components 

and [ ]C  is the elastic constitutive  matrix in global 
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coordinate system.  
The linear piezoelectric constitutive equations coupling 
the elastic and electric fields can be respectively 
expressed as the direct and converse piezoelectric 
equations as 
{ } [ ]{ } [ ]{ }D e Eε= + ∈                                                                              (6) 
{ } [ ]{ } [ ] { }TC e Eσ ε= −                                                                             (7)                                                                                                                       
 where { }D  denotes the electric displacement vector, { }σ  
denotes the stress vector, { }ε  denotes the strain vector 
and { }E  denotes the electric field vector. Further [ ] [ ][ ]e d C= , 
where [ ]e  comprises the piezoelectric coupling constants, 
[ ]d  denotes the piezoelectric constant matrix and [ ]∈  
denotes the dielectric constant matrix. The element has 
been assumed with one electrical degree of freedom at 
the top of the piezoelectric actuator and sensor patches, 

e
aφ  and e

sφ  respectively. Electrical potential has been 
assumed to be constant over an element and vary linearly 
through the thickness of piezoelectric patch. For a thin 
piezoelectric patch, the component of the electric field in 
the thickness direction is dominant. Therefore, the 
electric field can be accurately approximated with a 
non-zero component only in the thickness direction. With 
this approximation, the electric field strengths of an 
element in terms of the electrical potential for the 
actuator and the sensor patches respectively are 
expressed as 
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where subscripts a and s refer to the actuator patch and 
the sensor patch, respectively. The superscript e denotes 
the parameter at the element level. eBa

⎡ ⎤
⎢ ⎥⎣ ⎦

 and eBs
⎡ ⎤
⎢ ⎥⎣ ⎦

 are the 
electric field gradient matrices of the actuator  and the 
sensor elements respectively. It should be noted that the 
electric potential is introduced as an additional degree of 
freedom on an element level.  
The coupled finite element matrix equation derived for a 
one-element model becomes 
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Considering a laminate made up of N layers with a total 
thickness of T, the elemental mass and transformed 
stiffness matrices can be written as 
Structural mass: [ ]e TM N N dVuu V

ρ⎡ ⎤ ⎡ ⎤∫=⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
                             (11) 

Structural stiffness:  
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Dielectric conductivity:  
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               (13) 

Piezoelectric coupling matrix: 
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After assembling the elemental stiffness matrices, the 
global set of equations become                  

{ } { } { }..
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For open electrodes, charge can be expressed as 
{ } 0G =                                                                           (18)                  
The overall dynamic finite element equation can be 
is
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                                                                                    (19)                  
where Muu⎡ ⎤

⎣ ⎦  is the global mass matrix, Kuu⎡ ⎤
⎣ ⎦  is the 

global elastic stiffness matrix, Kua⎡ ⎤
⎣ ⎦  and Kus⎡ ⎤

⎣ ⎦  are the 
global piezoelectric coupling matrices of actuator and 
sensor patches respectively. Kaa⎡ ⎤

⎣ ⎦  and Kss⎡ ⎤
⎣ ⎦ are  the 

global dielectric stiffness matrices of actuator and sensor 
patches respectively. The displacement vector ( )d t  is 
approximated by the modal superposition of the first ‘r’ 
modes as 
{ ( )} [ ]{ ( )}d t tψ η≈                                                                       (20)                  
where [ ][ ] 1 2......... rψ ψ ψ ψ=  is the truncated modal matrix. 
The decoupled dynamic equations considering modal 
damping can be written as 
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whereξdi  is the damping ratio.  In state-space form  
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 is the system matrix, 
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disturbance matrix, { }du  is the disturbance input vector, 

{ }φa is the control input, and 
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                                                  (23)                   

The sensor output equation can be written as  

{ } { }[ ]0y C X=                                                                 (24) 

where output matrix [ ]0C  depends on the modal matrix 
[ ]ψ and the sensor coupling matrix Kus⎡ ⎤

⎣ ⎦ . 
LQR optimal control theory has been used to determine 
the control gains by minimizing a cost function or a 
performance index given by   
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1
({ } [ ]{ } { } [ ]{ })2

0

t f
T TJ y Q y R dta at

φ φ∫= +                                     (25)                                                                                                                        

where [Q] and [R] are the semi-positive-definite and 
positive-definite weighting matrices on the outputs and 
control inputs, respectively.  
 Minimization of J leads to the steady-state matrix Ricatti 
equation whose solution leads to the gain as       

1
[ ] [ ] [ ]

T
G R B Kc

−⎡ ⎤ =⎢ ⎥⎣ ⎦                                                        (26)                                                                                                                       
Considering output feedback, actuation voltage can be 
calculated as  
{ } [ ]{ }G ya cφ = −                                                              (27)                                                                                                                        
Ang and Quek [2] proposed that [Q] and [R] matrices 
could be determined considering weighted energy of the 
system as follows 

[ ] [ ][ ] [0]2[ ] ,
[0] [ ] [ ][ ]1

T K
Q

T M

α ψ ψ

α ψ ψ

⎡ ⎤
⎢ ⎥
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⎣ ⎦

and ˆ[ ] [ ]R Rγ=                (28)                                                                             

The proposed weighted energy of the system in the 
quadratic form is                                                                                                                                    

. .
1 1 1 ˆ{ } [ ]{ } { } [ ]{ } { } [ ]{ }1 22 2 2

T T T
X M X X K X Ra aα α γ φ φ∏ = + +       (29)                                                                      

where, ,  1 2 and α α γ are the coefficients associated with 
total kinetic energy, strain energy and input energy 
respectively. These coefficients will take different 
values in the control algorithm apart from the value of 
unity to allow for the relative importance of these energy 
terms.                                                                                                      
Therefore, a search algorithm is required for finding [Q] 
and [R] by taking ,  1 2 and α α γ  as variables, which will  

1
 

241
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Maximize d

p

ξ
π

=
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                                                  (30)                                                                                                                         

Subjected to , 1, ...i ni max aφ φ< =                                    (31)                                                                                           

where ln
1

xip
xi

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

, na is the number of actuators and maxφ  

refers to the maximum voltage that can be applied on the 
actuators depending on the piezoelectric materials and 
thickness of the piezolayers. 
  
3. GA APPROACH TO LQR  
     In the present work, weighting matrices have been 
determined by the genetic search to obtain best control 
gain for the optimal LQR scheme. Parameters 

1 2,  and α α γ  in Eq. (36) have been represented by 
real-valued genes for finding [Q] and [R] matrices. The 
fitness value has been calculated with respect to each 
chromosome using the following expression.   
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241 2

1810 , 
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2

if i max
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φ φ
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                                      (32)                                                                                                                         

 The ranges of 1 2,  and α α γ  are taken as 
0 200,1α< ≤ 0 200 0 22  and α γ< ≤ < ≤  where controlled 

response depends on ,  1 2 and α α γ . Parents have been 
selected through roulette wheel operator and offspring 
have been created using simulated binary crossover and 
polynomial mutation operator [8]. Genetic evolution has 
been continued for large number of generations till the 
fitness converges.  
 
4. RESULTS AND DISCUSSIONS 
    Based on the formulations described in the previous 
section a code has been developed. The code is first 
validated with benchmark problems and then applied for 
simulation of vibration control.  
 
4.1 Validation 
    A cantilever bimorph (as shown in Fig. 3) made of two 
PVDF layers laminated together is subjected to a unit 
external voltage. The transverse deflections calculated 
have been compared with the already published results of 
Hwang and Park [14] in the Table 1 and excellent 
agreements have been achieved. 

 
Fig 3. Schematic view of a cantilever bimorph beam. 

 

Table 1: Deflections of piezoelectric bimorph actuator 

 

 

 

 

 
 
 
 
 
4.2 Control of an Ellipsoidal Shell Panel 
     In this study, a simply supported smart graphite/epoxy 
composite ellipsoidal shell panel on a square base (a = b 
= 0.04 m) has been considered to study the vibration 
control. The major axis length is 2×R and minor axis 
length is 1.5×R. The radius is taken as R  = 0.06 m. The 
stacking sequence of each smart graphite/epoxy 
laminated structure considered is [p/[0/90]s/p]].  Here ‘p’ 
stands for piezo-patches one for sensing and the other for 
actuation. In all the cases, thickness of each piezoelectric 
patch has been considered as 0.5 mm, the allowable 
voltage of each PZT patch has been taken as 500V[15] 

Distance  
from 
fixed end 
(mm) 

Deflection ( mμ )  
Hwang and 
Park [14] 

Present FEM 

    20 
    40 
    60 
    80 
   100 

0.0131 
0.0545 
0.1200 
0.2180 
0.3400 

0.0136 
0.0540  
0.1223     
0.2181  
0.3416  
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and thickness of each FRP composite ply has been 
considered as 0.75 mm. Table 2 shows the material 
properties considered in the present study.  

 
 

Fig 4. Collocated sensors and actuators location 
 
     Six numbers of collocated sensors and actuators have 
been considered and based on an optimal placement 
scheme those are placed as shown in figure 4. A modal 
damping ratio ( dξ ) of 1% has been assumed to obtain 
open loop response and to calculate LQR gains.  The 
smart panel has been subjected to an impulse load of 10 
N at the center for a duration of / 25τ seconds (where τ  
is the time period corresponding to first natural 
frequency of the system) and impulse responses of this 
panel have been calculated with a time step of /100τ  
seconds. 

Table 2: Material Properties 
 

 
     Uncontrolled displacement of the ellipsoidal shell 
panel is shown in Fig.5. The LQR and GA-LQR 
controlled displacement histories of smart ellipsoidal 
panel have been depicted in Fig. 6. It could be observed 
from figure 6 that both simple LQR and GA-LQR could 
control the vibration. However, in the GA-LQR 
controlled response of the panel, the closed 
loop-damping ratio achieved has been 17% compared to 
only 3.12% in the case of simple LQR control scheme. 
The maximum actuator voltage variations for simple 
LQR and GA-LQR control scheme have been shown in 
Fig. 7, which clearly shows that the GA-LQR control 
scheme could achieve, better control with minimum 
actuation voltage requirement. From this study it could 
be concluded that GA-LQR control scheme leads to the 
maximization of closed loop damping ratio with 
minimum input/actuator voltage within the limit. 
 

 
Fig 5. Uncontrolled displacement history 

 
 

Fig 6. LQR and GA-LQR controlled displacements 
 

Fig 7. Maximum actuator voltage variation using LQR  
  and GA-LQR control schemes 
 
5. CONCLUSIONS 
     In the present work, a GA based LQR optimal control 
scheme have been developed for optimal vibration 
control of smart shell structures. This module along with 
layered shell finite element analysis has been used to 
simulate active vibration control of smart ellipsoidal 
shell FRP structures. It has been observed that the present 
GA based LQR scheme is far superior to conventional 
LQR scheme in terms of effective closed loop damping 
ratio and minimizing the actuator voltage requirement 
while keeping it within limit. Therefore this could be 
advantageously used in design of control gains in smart 
structures applications.  
 
 
 
 
 

Material 
properties 

Structural 
laminae 

PZT 

E1 
E2 = E3 
G12 = G13 
G23 

υ12 = υ13 = υ23 

 ρ 
e31 = e32 

∈11 =  ∈22 =  ∈33 

172.5 GPa 
6.9  GPa 
3.45 GPa 
1.38 GPa 
0.25 
1600 kg m-3 

0.0 
0.0 

63.0 GPa 
63.0 GPa 
24.6 GPa 
24.6 GPa 
0.28 
7600 kg m-3 
10.62 C m-2 
0.1555x10-7F m-1 
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