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1. INTRODUCTION 
     Loading transfer between components in engineering 
assemblies often causes very high localized stresses, 
generally called contact stresses, which lead to 
component failure by different forms of surface contact 
fatigue. Consequently, the evaluation of contact area 
geometries, pressure distribution, stresses is imperative 
to prevent premature failure such as pitting, spalling, 
false brinelling. 
     The analysis of contact stresses between simple 
geometries like cylindrical elements or spherical 
elements have attracted the attentions of many 
researchers. There are lots of works on these simple 
geometries. Heinrich Hertz[1] for the first time  analyzed 
the contact stresses by determining the loading 
distribution over the contact area and provided the 
mathematical models for the stress field using a potential 
function for the case of spherical contact. He deduced 
that an ellipsoidal distribution of pressure would satisfy 
the boundary conditions of the problem for the case of 
spherical contact. He verified his analytical results by 
running a series of experiments. Hertz only considered 
spherical contact for his analysis. And for a long time 
there was no remarkable research on contact problems. 
Every contact problems were solved on Hertz spherical 
contact theory.  Lundberg [2] analyzed the problem when 
two bodies of different geometries come in contact. He 
calculated the stresses for the case of a cylinder and a 

spherical ball pressed on a flat plate and verified his 
findings by photo elastic technique. Both (Hertz and 
Lundberg) considered only normal loading for their 
analysis. But for the case of contact between two rotating 
elements, there is always tangential traction except pure 
rolling. So in that case there exist some tangential 
loadinging. Mindlin [3] investigated the stress 
distribution due to tangential loading when one elastic 
body slides over the other across the contact area for the 
case of cylindrical contact. Mindlin found that the 
stresses on the bounding curve of the contact area due to 
bounding curve are infinite and consequently a state of 
impending slipping prevails. Smith and Liu [4] studied 
the contact between parallel rollers in combined rolling 
and sliding for spherical contact only. Though there are 
lots of works on gear contact, cam – follower contacts 
and so on, but all of theses were based on simple contact 
geometries. With advent of time more complex 
geometries evolved and hence researches were needed on 
complex geometries. Al Zain [5] analyzed the contact 
problem between two conical rollers only under the 
normal loading. Shakoor[6] also agreed with Zain’s 
proposal while he was doing research on special cam 
follower contact problems. Later Litvin [7] has used 
Zain’s proposal for his research of bevel gear. But no one 
did research on conical rollers for complex loading and 
also finite element verification. 
     This work was based on more complex geometries 
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rather than simple geometries by considering conical 
rollers are in contact [8] under both normal and 
tangential loading. The stresses due to conical rollers in 
contact with application of both normal and tangential 
loading have been solved using finite element simulation 
software ANSYS [9]. The results obtained from ANSYS 
have been verified with analytical solution. The 
distribution of stresses has been observed for different 
contact geometrical parameters and loading conditions. 
 
2. ANALYTICAL SOLUTION 
     When two geometrically and materially identical 
conical rollers come into contact with each other under 
the application of a uniform compressive normal loading 
in rolling, the contact patch appears in the form of 
trapezoid, in contrast with two cylinders where the 
contact area is a rectangle.  
 
2.1 Radius of Curvature 
     The radius of curvature of a conical roller is equal to 
the radius of curvature of an ellipse formed by a cut plane 
normal to the external surface of the conical roller. This 
radius of curvature varies as the cut plane moves along 
the contact length. Figure -1 shows two ellipses in a side 
view formed by sectioning conical rollers by the cut 
plane at t.  
 

 
 

Fig 1. Two conical rollers in contact 
 
The radius of curvature of the osculating rollers for the 
section at t is – 
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     Equation (1) is a parametric form of radius R of 
curvature, where all values of R along the contact length 
can be determined as t increases from 0 to l. A and B are 
the lengths of the major and minor axis respectively of 
the ellipses of osculating rollers 1 and 2 at t, when viewed 
perpendicular to the section, as shown in figure 1. The 
lengths of the major and minor axes, which are also 

function of t, are determined by visualizing the cone in a 
three dimensional space. From figure 2 the length of the 
minor axis of each cone is –  

 
Fig 2. Front side view of conical cylinder 
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     Where r is the radius of each cone at t and φ is the 
vertex angle. The application of the above equation 
requires a vertex angle greater than 0o and less than 
45o .At 0, the cone reduces to a line and at-45 the cutting 
plane t becomes parallel to the side l.  
Putting the values of OD, DF and DC in the above 
equation gives 
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    For  0<φ<45 (3) 

where S is the distance from the apex, and f is length of 
the section, perpendicular to the cone surface, at t  
projected on the Y-Z plane passing through the axis of the 
cone. The above equation can be written in terms of t as 
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where K is a constant which is given by  
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The length of the major axis of each cone is – 
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Putting the values of equations (4) and (6) in equation (1) 
gives – 
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The conical roller geometric constant b that depends only 
on the radii of curvature of two cones, at t is – 
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It may be noted that like b, has a unique value for each 
value of t as long as long radius of curvature is not 
infinite or undefined.  
 
2.2 Stress Distribution 
     Plane strain conditions have been assumed.  The other 
two stresses (σx and σz)   have been determined first by 
considering point loading distribution for normal and 
tangential loadinging and hence integrating over the 
deformed area i.e. contact patch. Von misses shear stress 
(τxz) has been analyzed using normal stresses. Following 
equations were used for stress distribution- 
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2.3 Other Equations 
      For tangential loading – 
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     It is noted that half width does not vary with 
tangential loading if the material properties of two 
mating bodies are identical.   
Pressure Distribution and Maximum Pressure 
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Pmax = 2*F/ πal                  (15) 

 
3. FINITE ELEMENT SIMULATION 
     In order to analyze conical rollers in finite element 
model, a geometrical model was created using Solid 
Works software. The length of the two rollers was 20 mm 
and vertex angle was 5 degree. The radiuses at the tip 
were 5 mm for both rollers. Then the geometrical model 
was transferred to ANSYS finite element software. After 
that, geometrical modeling was completed by creating 
surfaces using the loft method. In the meshing process, 
tetrahedral 10-Node element (SOLID 187) elements 
were employed to increase accuracy of the modeling. 
Materials have bees used steel with E=209 GPa and 
poison’s ratio 0.3 As in case of contact problems stress 
are concentrated close to contact region. So, fine mesh is 
required in the contact region. To do so, first all the 
geometrical models have been meshed freely. Then the 
contact surface has been mapped mesh to finer the 
meshing 
     Convergence criteria should be considered to evaluate 

the results. Convergence analysis is performed on a 
metallic model of the conical rollers. By improving mesh 
density step-by-step a suitable number of elements is 
obtained. The stabilization of deformation and 
Von-Misses equivalent stress at a location far from the 
applied loadings are the criteria of convergence. The 
depiction of the FE model is shown in figure. 3.  To give 
uniform compressive loading an almost zero thickness 
plate has been used.  
 

 
 

Fig 3. Finite element model 
 
4. RESULTS AND DISCUSSION 
     In case of conical rollers in contact, the contact area is 
in form of trapezoid. So half width is not constant like 
cylindrical contacts. Though the half width is axis 
symmetric along line of contact but it varies along the 
length of the conical roller which has been shown in the 
figure 4.  From the graph it has been observed that at the 
tip of conical rollers, half width has minimum dimension 
and it increases with the increase of length of the rollers. 
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Fig 4. Half width distribution 
 
    As the maximum pressure under contact region 
depends on the deformed shape of the rollers, so 
maximum pressure has been found varying with the 
length of the conical rollers. At the tip of the conical 
rollers, the half-width is the minimum, so maximum 
pressure has been found largest at the tip as Pmax 
inversely proportional to half-width. The variation has 
been shown in the figure 5.    
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Fig 5. Maximum pressure distribution 
 
     Stress distribution for X axis (σx) in case of normal 
loading has a maximum stress ratio i.e. σx /Pmax is -1. It 
means that stress is compressive and maximum stress has 
a value same as maximum pressure. The maximum stress 
has been found at contact surface i.e z/a=0 and at x/a = 0 
i.e. at line of symmetry. For the case of tangential loading, 
the distribution is linear. In leading edge i.e. where 
rolling starts, the stress type is compressive and in tailing 
edge its type is tensile. The maximum stress ratio occurs 
at contact surface i.e. z/a= 0 and a value of 0.6. In leading 
edge it has been found compressive at x/a=1 i.e. where 
contact begins. In tailing edge it has been found tensile at 
x/a= -1 i.e. where contact ends. For combined loading, 
the maximum stress has been found at contact surface i.e. 
z/a=0 and it has been found at x/a=0.5 distance towards 
the leading edge with a value of -1.167. So in case of 
combined loading stress component in X direction has a 
value 16.7% higher that for normal loading and has been 
found 50% shifted towards the leading edge from 
symmetry. The stresses distributions for different loading 
have been shown from figure 6 to 8. 
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Fig 6. Distribution of  σx  under normal loading 
 

Stress Ratio vs x/a ( Tangential Loading)
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Fig 7. Distribution of σx under tangential loading 
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Fig 8. Distribution of σx under combined loading 
 
     As the maximum contact pressure is higher at the tip 
of the conical roller, so stress will be high at the tip. It 
decreases in value with the increases the length from the 
tip. In the figure 9 the stress distribution in X axis (at 
surface i.e. z/a=0) for combined loading has been shown 
 

Stress in X-direction vs. x/a at different length 
(Combined Loading)
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Fig 9. Distribution σx along contact length 
 
     Stress distribution in Z axis i.e. axis directed to solid 
vs. x/a shows that there is same distribution as pressure 
distribution for normal loading. The maximum stress 
ratio that is stress to maximum pressure has been found at 
x/a=0 and at the surface. With increasing of the distance 
from the surface it decreases. The maximum value of 
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stress ratio is -1 that is exactly same what the value for 
maximum normal pressure.  
     The stress distribution (for tangential loading) vs. x/a 
shows linear relation. The stress ratio has very negligible 
value. It means by applying tangential loading in X 
direction, stress components in Z axis don’t vary so much. 
So, for combined loading the stress distribution has 
shown same like for normal distribution. The stress 
distributions in Z axis for different loadings have been 
shown from figure 10 to 12.  
 

Stress Ratio vs. x/a (Normal Loading)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-4 -3 -2 -1 0 1 2 3 4

x/a

St
re

ss
 R

at
io

z=0a

z=.125a

z=.25a

z=.375a

z=.5a

z=.75a

z=1.0a

 
 

Fig 10. Distribution of σZ for normal loading 
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Fig 11. Distribution of σZ for tangential loading 
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Fig 12. Distribution of σZ for combined loading 
 

     Like the stress distribution in X axis, stress in Z axis 
also varies with varying distance from tip. At the tip i.e. 

at t=0, the stress is maximum and its value decreases with 
increasing the distance from tip. The variation of stress 
along the contact length has been shown in figure 13. 
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Fig 13. Distribution σz along contact length 
 
     From the distribution of stress in Y axis, we have seen 
that the distribution is as like as that for X axis, i.e. 
maximum value has been found some value tilted 
towards leading edge. But value of stress ratio is of 0.60 
which is lower than other two components. So this stress 
component does not have significant role for contact 
stresses.  The location where maximum stress has been 
found is at contact surface (z=0) and at a distance 
(x/a=0.5) from line of symmetry. The stress distribution 
has been shown in figure 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 14. Distribution of σy for combined loading 

 
     From Von Mises stress distribution along x/a it has 
been found that maximum value for shear stress has been 
found that for z/a=.34 at it has been found at x/a=0 with a 
stress ratio of 0.4. At surface z=0 the value is not as high 
as that for z/a=0.30, though all other stress components 
are high at surface. The shear stress also varies with 
contact length. The distribution of shear stress with the 
variation of x/a and z/a as well contact length have been 
shown from figure  15 to 18. 
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Shear Stress Ratio  vs. x/a
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Fig 15. Distribution of shear stress along x/a  

(combined loading) 
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Fig 16. Distribution of shear stress along z/a 
 (combined loading) 
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Fig 17. Distribution shear stress along contact length and 

x/a 
 
 

Stress vs. z/a at different length
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Fig 18. Distribution Shear Stress along contact length 
 and  z/a 

 
      The results those have been obtained from ANSYS 
are very close to analytical solutions. Stress components 
in each direction are almost same with that of analytical 
results which have been solved by integration. To 
compare results only steel material has been considered 
with same loading conditions. The overall geometry and 
contact geometries were identical. The comparisons of 
the results have been shown from figure 19 to 21.  
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Fig 19. Comparison of σx with analytical solution 
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Fig 20. Comparison of σz with analytical solution 
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Shear Stress Distribution vs. x
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Fig 21. Comparison of shear stress with analytical 
solution 

 
5. CONCLUSION 
     For simple geometries like sphere to sphere contact, 
cylinder to cylinder contact or cylinder to plane contact, 
the contact area or deformed area is either circular or 
rectangular based on type of contacts. But for conical 
rollers are in contact, the deformed area is trapezoid so 
half width varies with distance (from smaller end).  
In case of combined loading stress component in X 
direction has a value 16.7% higher that for normal 
loading and has been found 50% shifted towards the 
leading edge from symmetry. σx varies along the contact 
length. With increasing of the distance from the apex of 
the roller σx decreases. The variation of stress between 
apex and larger end of the conical roller is 13.8% i.e. at 
the apex of the cone the stress is 13.8% higher than that at 
the large end. 
     The maximum value of stress ratio in Z direction for 
the case of tangential loading is .072 i.e. very negligible 
in compare with normal loading which is -1. So, for 
combined loading the distribution is almost like stress 
distribution for normal loading. In case of combined 
loading the stress ratio is -1 and it has been found as like 
as normal distribution i.e. at contact surface and in the 
line of symmetry of pressure distribution. 
     For the case of contact problems, the main cause of 
the initiation and propagation of crack or cracks is the 
maximum value of shear stress. In this present work to 
predict maximum shear stress Von Mises Maximum 
Shear Stress principle has been used. The maximum 
value as well as location of that peak value is important. 
From this work, for the case of combined loading we 
have found that the peak value of shear stress ratio i.e. 
ratio of maximum shear stress and maximum pressure is 
0.39 which is 7.6% higher than that for only normal 
loading The location of the maximum shear stress has 
been found at x/a=0 i.e. the line of symmetry and at 
z/a=0.30. So from this two works it can be found that for 
combined loading the location of the maximum shear 
stress is 20% less deep from contact surface. The results 
obtained from ANSYS have been found consistent with 
those analytical results.        
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
σx Stress in X direction (Along 

Contact) 
(MPa) 

σz Stress in Z direction ( Into the 
solid) 

(MPa) 

σy Stress in Y direction (Along 
the length of the roller) 

(MPa) 

R Radius of curvature (mm) 
t Distance from tip of the rollers (cm) 
l Length of the roller (cm)
φ Vertex Angle (o)
a Half Width (mm) 

P(x) Normal Pressure Distribution (MPa) 
Pmax Maximum Pressure (MPa) 
q(x) Pressure Due to Tangential 

Loading
(MPa) 

S Cut plane distance (mm) 
s Integrating variable (-) 
E Young’s Modulus (GPa) 
υ Poisson’s Ratio (-) 
μ Kinetic Friction between two 

rotating rollers 
(-) 

F Applied Compressive Loading (N) 
r Radius at tip of the rollers (mm) 
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