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1. INTRODUCTION 
      The ever increasing industrial demand for 
axisymmetric pressure vessels which have applications 
in chemical, nuclear, fluid transmitting plant, power 
plant and military equipment, have concentrated the 
attention of designers on this particular area of 
engineering. Therefore, the prevention of pressure 
vessel failure to enhance safety and reliability has 
received considerable attention. On the other hand, the 
increasingly scarcity of materials and higher costs have 
led researchers not to confine themselves to the 
customary elastic regime but attracted their attention to 
the elastic-plastic along with optimization approach 
which offer more efficient use of materials. So the main 
concern is to increase the safety factor without 
increasing its weight. This purpose can be fulfilled 
successfully by means of autofrettage process. In  this  
technique,  the cylinder  is  subjected  to  an  internal  
pressure  so  that  its  wall becomes  partially  plastic.  
The pressure is then released and the resulting residual 
stress lead to a decrease in the maximum von mises 
stress in the working loading stage. That means the 
increase in the pressure capacity of the cylinder in the 
next loading stage [1 & 2]. A  key problem in the 
analysis of autofrettage process is to determine the 
optimum autofrettage pressure and corresponding radius 
of elasto-plastic boundary where the maximum 
equivalent von mises stress in the cylinder becomes 

minimum. The analysis of residual stresses and 
deformation in an autofrettaged thick-walled cylinder 
has been given by Chen [3] and Franklin and Morrison 
[4].  Harvey’s report [6] gave only a concept about 
autofrettage but detail result was missing. Brownell and 
Young  [7],  and Yu  [8]  proposed  a  repeated  trial  
calculation method  to  determine the optimum radius of 
elastic plastic junction which  was  a  bit  too  tedious  
and inaccurate;  moreover  this  method  is based on the 
first strength theory which  is  in  agreement  with  
brittle materials. But pressure vessels  are generally 
made from  ductile  materials  [9 &  10] which  are  in  
excellent  agreement with  the  third or  the  fourth 
strength  theory  [11 & 13]. The graphical method 
presented by Kong [12] was also a bit too tedious and 
inaccurate.  Based  on  the  third  and  the  fourth  
strength  theory, Zhu and Yang [14] presented an 
analytic equation  for optimum  radius of elastic-plastic  
juncture, opt r in  autofrettage  technology. Ghomi & 
Majzoobi [15] proposed set of equations that used for 
determining optimum radius of elastic plastic junction. 
In the present work, Zhu & Yang’s equations based on 
fourth strength theory are employed to predict the 
optimum autofrettage radius. Numerical simulation is 
done by using ANSYS for calculating optimum 
autofrettage pressure. 
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2. ANALYTICAL APPROACH 
     Bi-Linear elasto-plastic behavior has been 
considered in this work.   

 
               Fig 1. Bi-linear stress strain curve 
 
The model, shown in figure 1 is described as follows: 
 

                          ó = óy + Epå                                               
(1) 

 
In which ó is the effective stress, óy is the initial yield 
stress, Ep is the slope of the strain hardening segment of 
stress strain curve , å is the effective strain. 
Cylinder is subjected to autofrettage pressure and 
become partially plastic. 

 
Ghomi & Majzoobi [16] proposed set of equations for 
determining radial and hoop stresses at different 
location along the cylinder wall in autofrettaged 
cylinder. 

 
For the elastic-plastic material with linear strain 
hardening: In plastic region, a= r = C, for an internal 
pressure P :  
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When the cylinder is pressurized to the autofrettage 
pressure and the pressure is removed, the residual stress 
distribution across the wall of the cylinder can be 
expressed as follow [16]: 
For elasto-plastic material: 
Residual stresses in plastic region a = r = c :  

σrr=   
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Residual stresses in elastic region c = r = b:  
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If the cylinder is loaded again by the internal working 
pressure, by superposing the residual stresses due to 
autofrettage and the working pressure, the final stress 
distribution in the wall of the cylinder will becomes: 

For elastic-plastic material: 

Overall stresses in plastic region a = r = c:  

σrf = 
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Overall stresses in elastic region c = r = b : 
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According to tresca yield criterion, the equivalent stress 

σeq can be defined as: σeq = σ = σè–σr  

σeq = σ = σè–σr                    (13) 
If the cylinder is intended to remain elastic throughout 
the loading process of the cylinder, then the equivalent 
stress should not exceed the yield stress of the material. 
i.e.: 

σeq =  σè–σr    = σy                         (14) 
 
A simple case study: 
Let’s consider an Aluminum cylinder where internal 
radius, a= 0.01 m and external radius, b = 0.02m. 
Material properties are summarized in table 1. 
 
  
Table 1: Material properties 
 

 óy (MPa)  E(GPa) Ep (GPa) í
Al 90 72 1.75 0.33

 
 

 
 

2.1 RESIDUAL STRESS PATTERN  
     This cylinder is subjected to an internal pressure so 
that its wall becomes partially plastic and the pressure is 
then released. Ghomi & Majzoobi [16] proposed set of 
equations for determining radial and hoop stresses at 
different location along the cylinder wall in 
autofrettaged cylinder. By using the equations the 
resulting residual stress pattern is shown in figure 2: 

 
Fig 2. Residual Stress Distribution 

From the figure, it is observed that residual compressive 
hoop stress occurs in near-bore region while residual 
tensile hoop stress occurs at outer portion. The resulting 
residual compressive hoop stress leads to a decrease in 
the maximum value of the von mises stress in the next 
loading stage. 
 
2.2 Comparison Of Stresses With And Without 
Autofrettage 

Fig 3. Comparison of Stresses with autofrettage and 
without Autofrettage. 

By using Lame’s equation for thick wall cylinder the 
stress pattern is obtained. If the same cylinder 
undergoes autofrettage process then the overall stress 
pattern will change, which is shown on the graph. From 
figure 3, following points are observed: 
Because of compressive hoop stress at inner bore, the 
resultant hoop stress becomes significantly lower in the 
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autofrettaged cylinder than the original hoop stress 
developed without autofrettage process at the same 
cylinder. Radial stress doesn't vary significantly after 
autofrettage process. The cylinder which undergoes 
autofrettage process has maximum stress occurring at 
the point of elasto-plastic junction.  

2.3 OPTIMUM ELASTIC PLASTIC RADIUS 

 
Fig 4.  Maximum Von Mises Stress At Different Radius 

of Elasto Plastic Junction 
 
When the ratio of radius of elasto plastic junction to 
inside radius equals to one (there is no autofrettage), 
then the maximum von mises stress exceeds yield stress, 
thus the material fails. Maximum von mises stress 
started to decrease as the radius of elastic plastic 
junction increases. After attaining a certain value of 
elastic plastic junction, maximum von mises stress 
started to increase. The point at which maximum von 
mises stress is minimum, is the optimum radius of 
elasto-platic junction. 
 
2.4: Zhu & Yang Model For Optimum Elastic 
Plastic Radius 
Zhu & Yang has developed an equation to determine 
opt r which we can calculate just using a pocket 
calculator. 

(a) based on third strength theory, 
ropt = a exp ( pw / σy)   

 (2) 
 

(b) based on fourth strength theory, 
   ropt = a exp ( v3pw / 2σy)   (3) 

Ghomi & Majzoobi deduced ropt by using MATLAB.  
For determining optimum radius of elastic plastic 
junction “Ghomi & Majzoobi’s model” and “Zhu 
&Yang’s model” are compared. It has been observed 
that these values vary between 5-7% only. 
Sample calculation:  
In this case study a=0.01m, b= 0.02m, working pressure 
pw = 46 MPa. 
From Zhu & Yang’s model, 

Based on third strength theory ropt = 0.01667 m. 
Based on fourth strength theory ropt = 0.0156 m. 

From Ghomi & Majzoobi’s model (fig. 4), it is 
observed that ropt  is occurring in between 0.015 to 
0.016 m. Indeed there is no significant variation 
between these two models. 

Zhu Yang model based on fourth strength theory is 
considered for calculating opt r that simplifies the 
calculation. 
 
3. NUMERICAL RESULTS  
Single cylinder with the dimensions; a=0.1 m, b=0.2 m 
and an elastic plastic material’s model with σy = 800 
MPa; Modulus of elasticity E = 207 GPa; Slope of the 
strain hardening segment Ep = 4.5 GPa; í = 0. 29; were 
used for numerical modeling. The two pressure limits 
Py1 and Py2 can be computed as follows [1 & 17]: 

                   Py1 = óy (1-1/k2)/v3 

                          =347 MPa 

                   Py2 = óy ln(k) 

                          =555 MPa 

If the autofrettage pressure is lower than 347MPa, then 
there will be no autofrettage effect. If the pressure is 
higher than 555MPa, then there will be converse effect. 
That means, instead of increasing, pressure capacity of 
the cylinder will decrease. 
On this paper, effect of following factors is checked in 
autofrettage process. The considered factors are :  
1. Working pressure; 2. Value of k (b/a); 3. Material 
model (elastic perfectly plastic and elastic plastic with 
different slope of strain hardening segment); 4. 
Autofrettage Stages. 
 
3.1 Working Pressure  
      The cylinders were subjected to autofrettage 
pressures ranging from 350 MPa to 650 MPa.  After  
removing  the  autofrettage pressure  (AP),  the  
cylinders  were  subjected  to  the  working 
pressures(WP)  of  100,  200, 300 and 400 MPa.  From 
the numerical simulations, the curve of the von-Mises 
stress distribution was obtained for each autofrettage 
and working pressure (WP). From the  curve,  the  value  
and  the  position  of  maximum  von-Mises stress  
(MVS)  were  extracted.  This  stress  and  its  position  
were then  plotted  versus  autofrettage  pressure  for  
each  working pressure. The results are shown in figure 
5. 

 
 

Fig 5. Variation of MVS versus autofrettage pressure at 
four working pressures. 
It  is  observed  that  for  each  working  pressure,  the  
MVS remains  constant  up  to  an  autofrettage  
pressure which  is  nearly equal  to Py1 . The curve then 
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begins to decline to a certain point thereafter, begins to 
rise or remains constant. It can be seen that for all 
working pressures, the rising portion of the curves end 
at a point which is nearly equal to Py2. 
From  the  numerical  results,  it  can  be  concluded  
that:  (i)  The MVS depends on  the working pressure 
and  for any WP,  the best AP  lies  between Py1 and 
Py2 ;  (ii)  For  autofrettage  pressures lower  than Py1  
and  higher than Py2 the  MVS  remains unchanged;  
(iii)  The  position  of  MVS moves  towards  the  outer 
radius as AP increases, (iv) For working pressure less 
than 300MPa, the autofrettage effect starts when the 
autofrettage pressure attain a value of 350 MPa. For 
working pressure 400MPa it is also observed that 
autofrettage pressure should be more than 400MPa to 
initiate the autofrettage effect. This means autofrettage 
pressure must be greater than the working pressure. 
 
Table 2: Effect of working pressure at maximum von 
mises stress 

 
WP 

(MPa) 

MVS 
Without 

autofrettag
e 

(MPa) 

MVS With 
autofrettag

e 
(MPa) 

 
%Reductio
n  
    Of MVS 
 

100 225 193 14.22 
200 450 348 22.67 
300 676 496 26.62 
400 840 615 26.78 

 
For constant value of K, percent reduction of MVS is 
observed for different working pressures. From the 
table, it is observed that percent reduction of MVS is 
higher at higher working pressure. This means the 
autofrettage effect is more beneficial at higher working 
pressure. 
 

3.2 Value Of K (B/A)  

Fig 6. Effect of K (b/a) On Optimum Autofrettage 
Pressure 

For constant working pressure (200 MPa) with different 
K values (inside radius constant), von mises stresses are 
observed for different autofrettage pressure. From 
graph, it is seen that optimum autofrettage pressure 
increases along with the k value.  
 
Table 3: Effect of k (b/a) on MVS 
 

 
K(b/a) 

MVS 
Without 

autofrettag
e 

(MPa)

MVS With 
autofrettag

e 
(MPa) 

 
%Reductio
n  
    Of MVS 

1.5 636 516 18.88 
2.0 450 348 22.67 
2.5 405 312 22.97 
3.0 380 281 26.05 

 
For constant working pressure, percent reduction of 
MVS is observed for different value of K. From the 
table 3, it is observed that the percent reduction of MVS 
is higher at higher values of K. This means the 
autofrettage effect is more beneficial with the increase 
of the thickness of the cylinder wall. 
 
3.3. Material model  
      For working pressure of 200 MPa, the cylinder is 
subjected to autofrettage pressure ranging form 250 to 
700 MPa. Here, the material of cylinder wall is varied 
form elastic perfectly plastic (Ep= 0) to elastic plastic 
with different slope of strain hardening segment (Ep= 
4.5, Ep= 30, Ep= 50). From  the  numerical simulations,  
the  curve  of  von-Mises  stress  distribution  was 
obtained  for each autofrettage pressure and different 
material models. From the  curve,  the  value  and  the  
position  of the  maximum  von-Mises  stress (MVS)  
were  extracted.   

 
Fig 7.  Effect of Material Model on Optimum 
Autofrettage Pressure 
From the graph, it is observed that von mises stress 
varies in nominal manner in between Py1 (347MPa) and 



© ICME2009  AM-21 6

Py2 (555 MPa). Variation becomes significant after 
exceeding Py2. The optimum autofrettage pressure is 
higher at higher value of the slope of strain hardening 
segment. The resultant von mises stress decreases as the 
slope of the strain hardening segment increases. So if 
the cylinder wall material has higher value of slope of 
strain hardening segment, then the autofrettage process 
can give us much more benedictions.  
 
 
3.4. Autofrettage Stages 
     Consider a cylinder with working pressure of 300 
MPa, where autofrettage pressure is 500 MPa. At first 
step, the autofrettage is done in three loading stages and 
at second step; autofrettage is done in nine loading 
stages. From the numerical simulation, it is observed 
that in both cases the MVS is 505 MPa and the stress 
pattern is almost similar. So there is no effect of loading 
stages on autofrettage process. 
 
4. CONCLUSION 
      From the analytical and numerical results the 
following conclusions can be drawn:  

1. In autofrettaged cylinder, maximum stress does 
not occur at inner bore instead, it occurs at the 
radius of elastic plastic junction. As the 
autofrettage pressure increases the point of 
maximum stress moves toward the outer bore. 

2. Optimum autofrettage pressure is not a 
constant value rather it depends on the working 
pressure. The optimum autofrettage pressure 
increases along with the increase of working 
pressure.  

3. For same working pressure, increasing the ratio 
of outer to inner radius K leads to an increase 
in the optimum autofrettage pressure. 

4. It has also been observed that if the slope of 
strain hardening segment increases then the 
optimum autofrettage pressure also increases. 

5. Because of autofrettage, percent reduction of 
maximum von mises stress increases for higher 
K value and for higher value of the slope of 
strain hardening segment. 

6. Number of autofrettage stages has no effect on 
pressure capacity. 
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6. NOMENCLATURE 
 

Symbol Meaning Unit 
a Internal radius (m) 
b External radius (m)
σèr 
σrr 
σrf 
σèf 
Pw 

Residual hoop stress  
Residual radial stress 
Overall radial stress 
Overall hoop stress 
Working pressure 

(MPa) 
(MPa) 
(MPa) 
(MPa) 
(MPa) 
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