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1. INTRODUCTION 
     Shock absorbers are basically untuned viscous 
vibration dampers designed to smooth out or damp shock 
impulse, and dissipate kinetic energy. A tuned vibration 
absorber is only effective at one frequency, the tuned one, 
and its usefulness is narrowly limited in the region of the 
tuned frequency [1]. In contrast, when the forcing 
frequency varies over a wide range, an untuned viscous 
damper (also called a shock absorber) becomes very 
useful [2]. Vibration problems become nonlinear in 
nature as amplitude of oscillation becomes large in 
numerous engineering applications [3, 4]. The problem 
becomes more involved as springs and dampers do not 
actually behave linearly in vibration problems [4-6]. Zhu 
et al. [6] extensively studied nonlinear response of two 
degrees of freedom (2DOF) vibration system with 
nonlinear damping and nonlinear springs. Recently, 
Mikhlin and Reshetnikova [5] studied the nonlinear 
2DOF system. In papers [7-8], theoretical investigation 
and some experimental verification on the use of 
nonlinear localization for reducing the transmitted 
vibrations in structures subjected to transient base 
motions have been presented. Nakhaie et al. [9] used the 
root mean square of absolute acceleration and relative 
displacement to find the optimal damping ratio and 
natural frequency of the isolator. Shekhar et al. [10, 11] 
have considered different alternatives to improve the 
performance of an isolator having a nonlinear cubic 
damping over and above the usual viscous damping. 
Alexander et al. [12] explored the performance of a 
nonlinear tuned mass damper (NTMD), which is 
modeled as a TDOFS with a cubic nonlinearity. 
     Most numerical studies regarding nonlinear vibration 

of structures, particularly involving multi degrees of 
freedom system (MDOFS), have been carried out in the 
form of initial value problems: all the boundary 
conditions, termed as system’s responses (displacement, 
velocity etc.), were specified at an initial time reference, 
followed by numerical integration of the governing 
differential equation. Such type of analysis involves 
simultaneous solution of a system of nonlinear equations 
where the number of equations to be solved is 
determined by order of the governing equations. This 
type of problem needs to simultaneously solve a large 
number of nonlinear equations that depends on the 
number of intermediate grid points in between the two 
time references. Though, Newton-Raphson method can 
be used to solve that large number of equations, there are 
chances of non-convergence of solutions.  
     Present work aims to solve both boundary and initial 
value problems for untuned vibration damper system. 
Generally, stability of the MDOFS system is studied by 
the method of perturbation. But a simple and direct 
method, like that of multisegment integration technique 
[13], that helps to directly visualize the system’s 
response with time, would be very useful, in particular 
for the present study, when a boundary value problem is 
dealt with.  
     Thus results have been obtained for different shock 
absorbers (Cases 1 – 16 in Table 1) for chosen boundary 
conditions and different parameters of interest (Tables 2 
– 3 and Fig. 1). Ideally, an untuned viscous damper is 
basically a 2DOFS with a very small mass ratio, having 
zero damping for the main mass (m1) and zero spring 
force for the absorber. Again both the main mass spring 
and absorber’s damper are linear. Such an ideal case has 
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been symbolized as case 1 in this paper. However only to 
simulate practical situations, a small damping for the 
main mass (m1) and a small spring force for the absorber 
are assumed. It is also assumed that these two nonzero 
forces can be nonlinear as well (cases 2-16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Arrangement of masses, springs and dampers for 

TDOF vibration system (nonlinear shock absorber). 
 

Table 1: Different cases of shock absorbers 
Case Combinations of 

Springs 
Combinations of 
Dampers 

1 Linear spring with 
main mass only 

Linear damper with 
second mass only 

2 Both springs linear  

Linear dampers 
 

3 Both springs hard  
4 1st spring: hard            

 2nd spring: soft  
5 1st spring: soft  

2nd spring: hard 
6 Both springs soft  
7 Both springs linear  

Hard dampers 
 

8 Both springs hard  
9 1st spring: hard            

 2nd spring: soft  
10 1st spring: soft  

2nd spring: hard 
11 Both springs soft  
12 Both springs linear  

Soft dampers 
 

13 Both springs hard  
14 1st spring: hard            

 2nd spring: soft  
15 1st spring: soft  

2nd spring: hard 
16 Both springs soft  
     
Table 2: Chosen Parameters of shock absorbers 
Parameters Initial Value 

Problem 
Boundary Value 
Problem 

m1 (kg) 100.0 100.0 
m2 (kg) 100.0 1.0 
k1 (N/m) 1000.0 1000.0 
k'1(N/m3) 0.0 ±0.5 
k2 (N/m) 0.0 10.0 
k'2 (N/m3) 0.0 ±0.005 
c1 (Ns/m) 0.0 0.03139 
c'1(Ns/m3) 0.0 ±0.003 

c2 (Ns/m) 63.246, 182.174, 
316.23, 632.46 

3.139 

c'2 (Ns/m3) 0.0 ±0.03 

1

1

m
k

 
3.162 3.162 

μ 1.0 0.01 
ζ 0.1, ζo =0.288, 0.5, 

1.0 
ζo=0.00496 

f (N) 20.0 20.0 
ω1 (rad/s) 3.162 3.006 
ω2 (rad/s) - 3.326 
 

Table 3: Prescribed boundary conditions 
 

Parameters BVP IVP 
y1(t=0.0s) (m) 0.05 0 
y2(t=50.0s) (m/s) 0.06 0 
y3(t=0.0s) (m) -0.07 0 
y4(t=50.0s) (m/s) -0.06 0 

  
     For Table 2, damping constant equals to the optimum 

damping ratio (ζo). These data are so selected to 

demonstrate the fact that untuned viscous vibration 

dampers become highly unstable because of increased 

nonlinearity. 

 
2. MATHEMATICAL MODELS  
     Fig. 1 shows the proposed model for the TDOFS 
while Table 1 shows the different cases of shock 
absorbers. Following Fig. 1, the equations of motion are 
as follows for the main mass and the damper mass, 
respectively,  
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For transformations, let 
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With those transformations, Equations 1 and 2 become,  
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Rearrangement of Equation (3) & (4) gives,  
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     The governing Equations (5) and (6) can now be 
rewritten as a set of four nonlinear first order ordinary 
differential equations (ODE) as follows:  
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The additional field equations, needed for multisegment 
method of integration are derived now from the above 
Equations. This is done by differentiating both sides of 
Governing Equations partially w.r.t.  y(a). More details 
can be found in [1,2]. 
 
2.1 Boundary Conditions 
     For different cases and chosen parameters (Tables 1, 
2) prescribed boundary conditions are as given in Table 3.  
According to the multisegment method of integration, 
the boundary conditions for any boundary value problem 
are arranged in the following matrix form, 
 

CbByaAy =+ )()(                                              (11) 
      
     Solutions of the boundary value problem with any 
arbitrarily chosen boundary conditions are possible by 
the present method.  
 
3. RESULTS AND DISCUSSION 
     Fig. 2 shows the absolute non-dimensional 
displacement (|d|) versus frequency ratio (r) for case 1. 
This problem is solved as initial value problem. No 
nonlinearity is taken into consideration. As seen from the 
figures, peak amplitude is lowest when ζo = 0.288 which 
is known as optimum damping ratio of the system. This 
analysis was made intentionally to compare the exact 
results for untuned viscous damper in [4].  
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Fig 2. |d| – r for case 1 at t=20s having μ=1.0 and solved 

as initial value problem  ζ=0.288, 0.5. 
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Fig 3.  |d| – r for case at t=20s having μ=1.0 and solved as 

boundary value problem. 
 
    These results of Thompson [4] are, of course, for 
steady state vibrations but present study includes the 
transient terms. Fig. 2 for the main mass prove the 
reliability of the code again as these give very similar 
curves given in Thompson [4].  
     Next, d – r curves for case 1 having μ=1.0 solved as 
boundary value problem are shown in Fig. 3. The 
boundary conditions given in Table 3 were used for this 
observation. As the boundary conditions were fixing 
final velocity of the system and damping force is 
proportional to velocity, eventually the damping force 
became fixed at that particular boundary (t=b). Damper 
in this case has little effect on the system’s final 
displacement unless optimum ζ = ζo is used. As seen from 
the figure, for ζ=1.0, amplitude (d) range varies from 
6.60 – 8.59, for ζ=0.1 range of d varies from 5.0 - 5.7 and 
for ζ=0.5 d varies from 3.295 to 5.28. But, for optimum 
damping ratio (ζ=0.288) system shows similar deflection 
to that of initial value problem. This also indicates that 
the effect of optimum damping ratio (ζo) on the system’s 
response is independent of boundary conditions. This 
figure also proves the fact that ζo  gives the minimum d .  
     dmax – ζ relation for varying mass ratio is shown  
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Fig 4. dmax - ζ with varying mass ratio (μ) for case 1 and 
solved as boundary value problem at t=20s. 
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Fig 5. |d| – r for case 2 having μ=0.01and ζ=0.00496 at 

t=50s and solved as boundary value problem. 
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Fig 6. d – t for case 6 with μ=0.01, ζ =0.00496 and 
r=1.012. 

 
     in Fig. 4. Each curve in this figure was drawn by 
taking the peak amplitudes of a particular mass ratio 
while varying the damping ratio. From Fig. 4 the line of a 
particular μ becomes steeper with the decrease of its 
value. So system with lower mass ratio but with fixed 

damping ratio gives larger vibration. For cross-check it 
can be readily seen that for μ=1.0 and ζ=0.288, dmax is 
minimum as discussed earlier. 
     System response for cases 2 – 16 can be seen in Figs. 
5-7. 
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Fig 7. d – t for case 11 with μ=0.01, ζ =0.00496 
and r=1.0. 

 
     Fig. 5 is for absolute non-dimensional displacement 
versus frequency ratio for case 2 at t= 50s. At 1≅r  
resonance occurs as the system behaves as SDOFS. Due 
to imposed velocity of the system at final condition the 
damper force also becomes fixed at the end. As seen 
from the figure, peak amplitude occurs at frequency ratio 
near unity and the peak value is 3.37. Cases 3 – 16 show 
similar type of deflection at t= 50s. 
     Fig. 6 shows the d – t curves for case 6 at r = 1.012. 
Case 4 also shows similar type of response at r=1.012. 
Solution for this type of spring and damper combination, 
does not converge with time, resulting an unstable 
system at r=1.0. This happens due to soft springs in 
absorber side with linear damping (case 4, case 6). 
Spring force of 2nd mass becomes negative due to 
negative index and this force cannot be diminished by the 
linear or soft damper.  This problem is eliminated when 
hard damper is used. Another way to solve this type of 
problem is to reduce the value of spring index of 2nd mass. 
As seen from figure, amplitude d ranges from 86.53 – 
2.09. Here again system approaches to stability with 
time. 
     In Fig. 7, d – t curve for case 11 at r=1.0 is shown. 
Amplitude ranges from 52.07 – 32.28. Cases 12 – 16 at 
r=1.0 show similar response. Those cases, not discussed 
in detail here can be seen in Ahmed [2]. 
 

4. CONCLUSIONS  
     As found in this study case 1 appears to be stable for 
any value of damping ratio but other cases 2-16 becomes 
unstable with increase of any nonlinearity index. A few 
causes of instability can be attributed to jump 
phenomenon and negative damping for the present study. 
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Jump phenomenon is for nonlinearity in the spring’s 
response. The amplitude suddenly jumps 
discontinuously near the resonant frequency making the 
unstable. The instability region near the resonant 
frequency depends on amount of damping and rate of 
change of forcing frequency among others. 
     Soundness of the code has been demonstrated 
comparing a few results of present analysis with 
available exact results. Following conclusions can be 
drawn from the present study: 

• Effect of optimum damping ratio (ζo) on the 
system’s response is independent of boundary 
conditions. Incase of optimum damping, 
untuned vibration damper vibrates with 
minimum amplitude. This happens for both 
initial value and boundary value problems. For 
example, case 1 with optimum damping ratio 
(ζo=0.288) shows similar deflections for initial 
value and boundary value problems. 

• Mass ratio (μ) plays a significant role on the 
maximum deflection of untuned vibration 
damper. For the same damping ratio, system 
with larger mass ratio shows smaller peak 
amplitude. But all the systems with a particular 
mass ratio show minimum peak at optimum 
damping ratio. 

• Increased nonlinearity in spring and damper 
makes the system more unstable.  

• Untuned system with different cases (2 – 16) 
shows similar responses for both lower and 
higher forcing frequency ratios. For example, at 
forcing frequency ratio r =0.3162 and 4.744 all 
the systems show similar responses.  

• From this study, we can conclude that practical 
springs and dampers should contain smaller 
nonlinearity indices as   systems with lower 
nonlinearity indexes approached to more 
stability. 

• Practically no spring or damper remains linear 
with ever-increasing response. Therefore, this 
study is particularly useful for cars’ shock 
absorber design and application. As stability of 
a shock absorber can easily change because of 
damper and spring nonlinearities. 
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6. NOMENCLATURE 
 
a Initial time reference 

b Final time reference 

c Damping coefficient (N-s/m) 

c1, c2 
Main mass and absorber mass damping 
coefficients (N-s/m) 

c′ Damping nonlinearity index (N-s/m3) 

c′1, c′2 
Main mass and absorber mass damping 
nonlinearity indexes (N-s/m3) 

d 
k1*x1/f : Nondimensional displacement for 
main mass 

e 
k1*x2/f : Nondimensional displacement for 
absorber mass 

f Amplitude of the applied force (N) 

F f sin (ωt) (N) 

k Spring constant (N/m) 

k1, k2 
Main mass and absorber mass spring constants 
(N/m) 

k′ Spring nonlinearity index (N/m3) 

k′1, k′2 
Main mass and absorber mass spring 
nonlinearity indexes (N/m3) 

m1, m2 Main mass and absorber mass (kg) 

r 
Frequency ratio: 

1

1

m
k
ω

 

 

r1 
Value of r at first natural frequency 
of the system 

r2 
Value of r at second natural 
frequency of the system 

t Time (s) 

x1 x 

x1, x2 
Main mass and absorber mass 
deflections (m) 

y1, y3    x1, x2 (m) 

1x& , 2x&  Main mass and absorber mass 

velocities (m/s) 

 y2, y4   1x& , 2x&  (m/s) 

ζ 
Damping ratio: 

11

2

2 km
c

 

ζo 

Optimum damping ratio : 

)2)(1(2 μμ
μ

++
 

μ Mass ratio: m2/m1 

ω Forcing frequency (rad/s) 

ω1,ω2 
Natural frequencies of the main mass 
and absorber masses 

DOF Degrees of Freedom 

DOFS Degrees of Freedom System 

MDOF Multiple Degrees of Freedom 

SDOF Single Degree of Freedom 

Tuned Absorber 2 DOFS without damping 

Untuned 
Absorber 

2 DOFS with damping 

Spring force 3xkkx ′±  

Damping force 2xxcxc && ′±  

Hard spring Nonlinearity index ( k ′ ) is positive 

Soft spring Nonlinearity index ( k ′ ) is negative 

Hard damper Nonlinearity index ( c′ ) is positive 

Soft damper Nonlinearity index ( c′ ) is negative 

Linear spring Nonlinearity index k ′ = 0.0 

Linear damper Nonlinearity index c′ = 0.0 
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