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1. INTRODUCTION 
     In order to reduce complexities as well as 
computational effort, a large number of 
three-dimensional problems are reduced to 
two-dimensional ones following the standard simplifying 
assumptions of either plane strain or plane stress 
condition. If one of the dimensions of a 
three-dimensional body is larger than other two 
dimensions, the problem can be considered as plane 
strain problem. A number of elastic problems have been 
solved using either plane strain or plane stress conditions 
based on existing elasticity formulations. Ogden and 
Isherwood [1] developed new formulations of the 
governing equations for finite plane-strain deformations 
of compressible isotropic elastic solids. Shuguang and 
Lim [2] used variational principles for the generalized 
plane strain problem of elasticity and they formulated 
total complementary potential energy functional has 
been applied to some classic problems in composite 
materials, viz. the analysis of transversely cracked 
laminates and the micromechanics of unidirectionally 
fiber-reinforced composites. Amadei and Goodman [3] 
developed a more general formulation of plane strain.  
They applied it to calculate the displacement and stress 
distributions around a circular hole drilled in a regularly 
jointed rock described as an equivalent anisotropic 
continuum. Tewary and Kriz [4] modified elastic plane 
strain Green’s function to account for generalized plane 
strain and applied to calculating the stress and 

displacement field in a biomaterial composite containing 
a free surface normal to the interface and subjected to an 
out-of-numerically as well as analytically. A generalized 
plane strain model was employed for the simulations of 
cold pilgering of fuel cladding for nuclear applications 
by Harada et al [5]. The difficulties involved in trying to 
solve the practical stress problems using the existing 
approaches, for example, the stress function approach or 
the displacement-functions approach [6], are clearly 
pointed in Ref. [7]. In the present paper, the displacement 
potential approach is extended for solving both the 
categories of plane problems of elasticity. Using this 
approach, a one-end fixed steel plate subjected to a 
combined loading of axial compression and shear, at its 
opposite end, is solved numerically. 
 
2. DISPLACEMENT-POTENTIAL FORMULATION 
FOR PLANE PROBLEMS OF ELASTICITY  
     The stress at a point of a two-dimensional elastic body 
can be represented by three dependent variables, namely, 
σxx, σyy and σxy. With reference to a rectangular 
coordinate system and in the absence of body forces, 
these three variables for the case of isotropic materials 
are governed by the two equilibrium equations [6].  
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To express the equilibrium equations in terms of 
displacement components, three stress-displacement 
relations are needed, which are obtained from Hooke’s 
law as [6], are valid for plane stress and plane strain 
conditions. 
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where EE = , νν =  ….… for plane stress condition 

21 ν−
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 …..  for plane strain condition 

Substituting the above stress-displacement relations into 
equations (1) and (2), two equilibrium equations for 
two-dimensional plane problems of isotropic materials in 
terms of the two displacement components are obtained 
as [7].  
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Although the above two differential equations are 
theoretically sufficient to solve the mixed-boundary 
value elastic problems of isotropic materials, in reality it 
is extremely difficult to solve  for two functions 
simultaneously satisfying the two second-order elliptic 
partial differential equations. In order to overcome this 
difficulty, the existence of a new potential function of the 
space variables is investigated in an attempt to reduce the 
problem to the determination of a single variable from a 
single differential equation of equilibrium. In the present 
formulation, the potential function ( )yx,ψ  for plane 
strain conditions is thus defined in terms of the 
displacement components as [7] 
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Substitution of equations (8) and (9) into equations (6) 
shows that the equilibrium equation (6) for plane stress 
and plane strain conditions is automatically satisfied. 
Therefore, ψ  has to satisfy the equilibrium equation (7) 
only. Expressing equation (7) in terms of the potential 
function, ψ   the condition that ψ  has to satisfy for the 
case of isotropic plane problems becomes [8] 
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Substituting the expressions as given by equations (8) 
and (9) into equations (3) to (5), one obtains the explicit 
expressions of three major stress components in terms of 
the potential function, ψ , for both the cases of plane 
stress and plane strain conditions, as follows: 
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3. NUMERICAL SOLUTION  
     Finite-difference technique is used to discretize the 
governing differential equation (10) and also the 
differential equations associated with the boundary 
conditions (Eq. (8), (9), (11) to (13)). The discrete values 
of the displacement potential function, ψ(x,y), at the 
mesh points of the domain concerned, is solved from the 
system of linear algebraic equations resulting from the 
discretisation of the governing equation of equilibrium 
and the associated boundary conditions The complete 
finite-difference expression of the governing equation 
(10) as well boundary conditions are available in Ref. [8]. 
Details of the computational scheme as well as 
management and placement of boundary conditions in 
terms of finite difference expressions are described in 
Refs. [7-8].  
 A square steel plate, ABCD, subjected to a uniform 
compression and shear loading is shown in Fig. 1. Its 
supporting edge is AB and a combined loading is applied 
at its right lateral edge, DC. The intensity of both the 
components of applied stress is 30 MPa. The Young’s’ 
modulus and Poisson’s ratio of steel are taken as 200 GPa 
and 0.3, respectively, to solve the problem. 
 
4. RESULTS AND DISCUSSIONS  
    In this section, the elastic field of the plate, whose one 
end is kept fixed and the opposite end is subjected to a 
combined loading, as shown in Fig. 1, is analyzed with 
the help of graphical representation. The variation of all 

 

Fig.1 Model of a fixed-ended plate 
subjected to a combined loading 
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displacement and stress components is shown 
graphically as a function of x/a as well as y/b.  

Figure 2 shows the deformed shapes of the plate for 
the case of plane stress and plane strain conditions in 
comparison with the original undeformed configuration. 
Effect of plane stress as well as plane strain conditions is 
clearly observed, particularly along the x-direction of the 
plate. At the supporting edge, both of the displacement 
components are zero, which is in good agreement with 
the physical characteristics of the problem. The plane 
strain solution gives a bit lower axial deformation of the 
plate than that of the plane stress condition. The lateral 
deformation is also found to be slightly lower for the case 
of plane strain solution. 

The distributions of axial stress component at 
different sections of the plate are illustrated in a 
comparative fashion in Fig. 3. It is observed that the 
magnitude of axial/bending stress is found to be higher 
for the case of plane stress solution when compared it 
with the corresponding solutions of plane strain 
approximation, particularly around the fixed support of 

the plate. The magnitude of the axial stress at the loaded 
lateral end is found to be identical to that of the applied 
one, which verifies the accuracy of reproducing the state 
of stresses at the loaded region. For the remaining 
longitudinal sections of the plate, the axial stress varies 
nearly anti-symmetrically with respect to the plate width, 
for both of the plane stress and plane strain conditions. 
For almost all sections except the loaded edge of the plate, 
the overall magnitude of axial stress is observed higher 
for plane stress condition than that of plane strain 
condition. Between the two corner regions of the 
supporting edge, top corner is identified to be more 
critical than the bottom corner, as far as the axial stress 
component is concerned. 

Fig. 4 illustrates the comparison of distributions of 
shear stress component at different sections of the plate 
for both the plane stress and plane strain conditions. For 
both the cases, the shear stress at the right lateral edge of 
the plate is found identical to that of the applied shear 
stress, which is again in good agreement to the physical 
model of the problem. At the supporting end, the effect of 
the approximation used (i.e., plane stress and plane strain 
conditions) is observed to be quite significant, which is, 
however, not that significant for the remaining sections 
of the plate. At the supporting end of the plate, the 
maximum shear stress under plane strain condition is 
found to be more than 1.5 times higher than that of the 
plane stress condition. Likewise the case of axial stress, 
the upper corner region of the supporting end is 
identified as the most critical section in terms of shearing 
stress.  

As the lateral displacement in most of the sections of 
the plate under plane strain condition is lower than that of 
the plane stress approximation, the body under plane 
strain is stiffer in lateral direction than that of plane stress 
condition. If the stiffness characteristic of the plate in 
different direction is considered, the lateral stress at 
different sections of the plate under plane strain should 
be higher than that of plane stress condition, and this 
phenomenon is reflected in the solution as observed in 
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Fig. 2 Deformed shapes of the plate
(magnification factor x100) 
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sections of the plate under different conditions
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Fig. 5. From the comparative analysis of different 
displacement components at different sections of the 
plate under the two conditions it is observed that, away 
from the supporting end, the stiffness variation due to 
different simplifying approximations becomes more 
prominent as we move towards the loaded end. 5. 

Finally, from the analysis of the normal stress 
component, σzz, at different sections of the plate it is 
observed that, at the loading and supporting ends, the 
distribution of this stress are found to be highly nonlinear 
and significant, however, for the remaining sections, the 
distribution of the normal stress is nearly linear and less 
significant in terms of magnitude.  
 
5. CONCLUSIONS 

     In the present article, the displacement-potential 
approach is extended for the solution of both plane stress 
and plane strain problems of solid mechanics. A one end 
fixed plate subjected to a combined loading of uniform 
compression and shear is solved using finite-difference 
technique, considering plane stress as well as plane strain 
conditions. The solutions of the elastic field are 
presented in a comparative fashion for plane stress and 
plane strain conditions. The present solution satisfies all 
the physical characteristics of the problem, which is 
clearly reflected by the deformed configuration of the 
plate. Loading and supporting edges of the plate are 
identified to be highly critical regions for both of the 
cases, which are realized by the detailed analysis of the 
results. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
ux Lateral displacement (mm) 
uy Axial displacement (mm) 
σxx Lateral stress component (MPa) 
σyy Axial stress component (MPa) 
σzz Normal stress component (MPa) 
σxy Shear stress component (MPa) 
G Shear modulus of material (MPa) 
E Elastic modulus of material (MPa) 
ν Poisson’s ratio    - - 
ψ Displacement potential  
a Plate width (mm)
b Plate length (mm) 
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