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1. INTRODUCTION 
     Rotary drilling is the most widely used drilling 
method. Drilling fluid is an essential component of a 
rotary drilling system. It is circulated through 
different parts of the hydraulic circuit by the mud 
pump principally for removing cuttings. During its 
circulation, pressure drop occurs at different 
segments of the hydraulic circuit due to friction 
between the drilling fluid and the surface in contact. 
The total frictional pressure drop in the hydraulic 
circuit, which equals the pump pressure, is termed as 
standpipe pressure (SPP). The hydraulic circuit 
typically consists of standpipe, rotary hose, swivel, 
kelly, drillstring, drill bit, and annular section 
between the drillstring and the casing or borehole 
wall. 
     SPP is an important drilling parameter that must 
be known with sufficient accuracy for selecting 
proper jet bit nozzle size, determining optimum flow 
rate to ensure efficient hole cleaning and for selecting 
proper mud pump liner. Continuous monitoring of 
SPP also helps in identifying downhole problems. 
For example, too low SPP  can be caused by washed 
out pipe or bit nozzle, loose joint or broken drill  

 
 
string, worn pump packing or liner, or lost returns 
due to formation fracture. On the other hand, too high 
SPP could indicate a plugged drill bit or increased 
mud density or viscosity. SPP anomalies can provide 
an early warning of circulation problems and thus can 
help the driller to make corrections before the 
situation is out of control. 
     SPP can be estimated using analytical frictional 
pressure drop relations. These relations are available 
for the three widely used rheological models namely 
Bingham plastic, Power law and Herschel-Bulkley. A 
detail description of this conventional approach is 
presented in [1]. However, the relations used in the 
conventional approach are based on a number of 
simplifying assumptions, such as concentric annular 
and circular sections, non-rotating drillstring, 
isothermal conditions in the bore hole and steady 
state axial flow. These simplifying assumptions are 
not completely valid in real life [2]. The effect of 
pipe eccentricity, pipe rotation, and temperature and 
pressure variations can have significant effect on 
frictional pressure drop in the annulus. Accurate 
determination of SPP is necessary for safe drilling 
because too high SPP can fracture the formation 
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resulting in lost circulation and too low SPP can 
cause kick which can lead to a blow out. 
     The limitation of the conventional approach led to 
the development of alternative method of SPP 
prediction using real time data. In this paper, the 
methodology used for estimating SPP using real time 
drilling data for a deviated well drilled in the North 
Sea is presented. Two approaches are considered for 
this purpose – i) regression analysis and ii) instance-
based reasoning (IBR).  

2. REAL TIME DATA COLLECTION 
     Real time data are collected by measurement 
while drilling (MWD) systems. Unlike wireline 
logging, MWD systems can be used for gathering and 
transmitting data from bottom-hole back to the 
surface without any interruption of the drilling 
operation. The data transmitted can be directional 
data, data related to the petrophysical properties of 
the formations and data related to drilling parameters 
such as SPP, weight on bit (WOB), mud flow rate, 
downhole temperature and torque. Relevant sensors 
and transmission equipment housed in a non-
magnetic drill collar in the bottom hole assembly are 
used for data collection and transmission to the 
surface. A typical MWD system consists of a 
downhole system (power source, sensors, transmitter 
and control system), a telemetry channel (mud 
column used for sending pulses to surface) and a 
surface system (used for detecting pulses, decoding 
the signal and presenting numerical display, 
geological log etc.). A typical MWD system is shown 
in Fig 1. 
     The real time drilling operation data used in this 
paper were collected while drilling the 8.5¨diameter 
deviated section of a well drilled in the Gullfaks field     
of the North Sea. The section was drilled using an oil 
based mud. Twelve measurements for each of the 37 
drilling parameters (including SPP, WOB, bit 
measured depth, bit torque, travelling block position, 
mud flow rate, mud density, equivalent circulating 
density, hook load and gas content in the mud) were 
made simultaneously every minute. A total of 
386,128 measurements were made for each drilling 
parameter from a measured depth of 5060 m to 6221 
m. The collected data were analyzed using 
MATLAB. 
 
2.1 Parameter Selection and Data 
Segregation 
     Among the different drilling parameters measured, 
mud flow rate and bit depth (DBTM) were 
considered for developing regression and IBR 
models. These are two of the four parameters that 
principally affect the pressure drop in a wellbore. The 
other two parameters are density of the fluid and flow 

Fig 1.  A typical MWD system3 

area. Since an oil based mud was used throughout the 
operation, and the dimensions of the drillstring and 
the hole remained the same during data collection, 
the last two parameters were not considered for 
model development. 
     The collected data were divided into two groups: 
data collected during tripping-in and data collected 
during drilling. This was necessary because tripping-
in (i.e. the process by which the drillstring is run into 
the hole) and drilling (i.e. the process by which the 
formation is penetrated by the drill bit) represent two 
different phenomena. During tripping-in, mud is 
circulated at times at constant flow rates with or 
without rotating the drillstring keeping the bit off 
bottom to clean up the hole. The flow can be either 
laminar or turbulent. On the other hand, dynamic 
condition prevails in the hole during drilling as the 
drillstring is rotating and vibrating. Hence the flow is 
usually turbulent during drilling.  
     Measured depth (i.e. the distance measured along 
the path of the wellbore) and bit measured depth (i.e. 
the distance travelled by the drill bit along the path of 
the wellbore) were used for data segregation. For 
tripping-in data, the two depths were considered 
different. But they were assumed to have an absolute 
difference of less than or equal to 0.1 m for the data 
collected during drilling. Furthermore, WOB (i.e. the 
load put on the bit by the drill collars to make 
penetration) was zero for tripping-in data and 
nonzero for drilling data. Also, the bit torque 
assumed nonzero values for drilling data while it was 
either zero or nonzero for tripping-in data. 
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2.2 Determination of Stationary SPP  
     To detect stationary SPP, determination of 
stationary flow rate and travelling block position is 
necessary. A flow rate was considered stationary if it 
had an absolute difference of less than or equal to 0.1 
lpm (1 lpm = 0.000167 m3/s) with its previous or next 
measured flow rate. The block position was 
considered stationary if it had an absolute difference 
of less than or equal to 0.1 m with its previous and 
next measured block positions. The SPP was 
considered stationary if the absolute difference 
between the previous measured value and the present 
one, and that between the present measured  value 
and the next one was less than or equal to 0.1 bar.    
     Using the criteria mentioned earlier, 10035 
measured mud flow rate, DBTM and SPP during 
tripping-in, and 4320 measured mud flow rate, 
DBTM and SPP during drilling were found. 
However, several similar measured data sets were 
found at particular bit depths. This happened because 
the measurements were made after a short time 
interval of five seconds. To overcome this, the mean 
of all the flow rates at a particular bit depth interval 
of one meter was calculated and only one flow rate 
closest to the mean was determined. The SPP 
corresponding to this flow rate was considered for 
further work. This action reduced the number of 
tripping-in data set to 828. The same refinement 
when used for drilling data reduced the number of 
data set to 729. After removal of outliers (i.e. 
observations that are indicative of measurement 
error), the number of data set was further reduced to 
764 for data collected during tripping-in and to 728 
for data collected during drilling. 

2.3 Selection of Training Examples and 
Query Instances 
     Training examples constituted of measured mud 
flow rate, DBTM and SPP were used for model 
development. Query instances consisting of the same 
parameters mentioned earlier were used for SPP 
prediction using the developed regression and IBR 
models. Among the 764 tripping-in data sets, every 
fifth data set is selected as a query instance including 
the first data set. This resulted in 611 training 
examples and 153 query instances. Same procedure 
produced 582 training examples and 146 query 
instances for the data collected during drilling. 

3. MODEL DEVELOPMENT 
     To estimate SPP for the tripping-in query 
instances, four regression models and nine IBR 
models were used. Same approach was used for the 
data collected during drilling.  

 

3.1 Regression Analysis 
     Regression analysis is a statistical technique for 
investigating functional relationship between the 
response variable, and one or more predictor 
variables. Regression models are most commonly 
developed using an error minimization criterion 
known as Least Squares Regression. In this method, 
the regression models are produced by minimizing 
the sum of the squares of the residuals. These models 
are based on three principal assumptions - 
independent predictor variables, equally reliable 
observations and normally distributed residuals. 
There are a number of least squares regression 
methods, such as linear least squares, weighted least 
squares, robust least squares and nonlinear least 
squares. Linear and nonlinear least squares methods 
produce regression models with acceptable goodness 
of fit parameters (such as SSE, RMSE and R-square) 
when none of the assumptions mentioned earlier is 
violated.  
     The parameters of a nonlinear model are adjusted 
using a fitting algorithm. Most widely used fitting 
algorithm is Trust-Region. This algorithm must be 
used if coefficient constraints are present. Another 
popular algorithm is Levenberg-Marquardt. It can be 
tried when the Trust-Region method does not 
produce a reasonable fit and there is no coefficient 
constraint [4]. 
     There are several robust regression schemes. But 
the most widely used schemes are Least Absolute 
Residuals (LAR) and Bisquare Weights. In LAR 
scheme, a curve is found that minimizes the absolute 
value of the residuals instead of the squared 
differences. Bisquare weights scheme, on the other 
hand, minimizes a weighted sum of squares.  
     For a regression model that fits the observed data 
well, SSE is close to zero, R-square is close to one 
and RMSE is close to zero. 

3.1.1 Regression Models for Tripping-in Data 
     Following four regression models were 
developed- 

Model1: 1.8730.0001521 18.44SPP Q= +  
Model2: 1.4970.002844SPP Q=  
Model3: 8 1.75 1.7520.2 2.46 10 ( )( ) 0.000241SPP DBTM Q Q−= + × +  
Model4: 10 1.76 1.7615.2 8.42 10 ( )( ) 0.000358SPP DBTM Q Q−= + × +  

     Both Model1 and Model2 were developed using 
robust least squares regression with LAR scheme and 
Trust-region algorithm. The curve fitting toolbox of 
MATLAB was used for this purpose. Model3 and 
Model4 were multiple regression models developed 
using linear least squares regression and robust least 
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squares regression respectively. All the models were 
developed using MATLAB 
     Among the four models, Model1 fitted the training 
data well with SSE=3488, R-square=0.9992 and 
RMSE=2.395. On the other hand, Model4 produced 
the worst fit of the training data with SSE=195000, R-
square=0.955 and RMSE=17.9. 

3.1.2 Regression Models for Drilling Data 
     Similar procedure as tripping-in data was followed 
for drilling data. Four regression models were 
developed as before. They are designated as 
‘Model1D’, ‘Model2D’, ‘Model3D’ and ‘Model4D’. 
The four models are as follows- 

Model1D: 1.8110.0002494 10.31SPP Q= +  
Model2D: 1.7090.0005629SPP Q=  
Model3D: 6162 1.57 10 ( )( ) 0.216SPP DBTM Q Q−= − − × +  
Model4D: 6168 1.32 10 ( )( ) 0.202SPP DBTM Q Q−= − + × +  

     Model1D and Model2D were found using 
nonlinear least squares regression. Model3D was 
found using linear least squares regression while 
Model4D was found using robust least squares 
regression. Among the four models, Model1D fitted 
the training data well with SSE=1213, R-
square=0.9864 and RMSE=5.578. On the other hand, 
Model4D produced the worst fit of the training data 
with SSE=37500, R-square=0.924 and RMSE=8.05. 

3.2 Instance-based Reasoning 
     Instance-based reasoning (IBR) is a machine 
learning method. Machine learning aims at 
developing computer programs which will learn from 
an existing database formed by real life experience 
and predict the value of the desired parameter (i.e. 
output) for a new unobserved situation using its 
learning experience.  
     The following methods were used to develop IBR 
models to estimate SPP for the deviated long well 
drilled in the North Sea: 

• k-nearest neighbor learning algorithm 
• Distance-weighted k-nearest neighbor 

learning algorithm 
• Locally weighted linear regression 

     The k-nearest neighbor learning algorithm is the 
most basic IBR method [5]. It predicts the output 
parameter based on the k-nearest neighbors of the 
query instance. The value of k can be any positive 
integer starting from one to N. When k=N, the 
prediction becomes the global average of all the 

training examples. The most frequently used value of 
k is three. 
     Distance-weighted k-nearest neighbor learning 
algorithm is a refinement to the previous learning 
algorithm. In this method, the contribution of each of 
the k-nearest neighbors is weighted with respect to its 
Euclidian distance from the query instance. 
     In locally weighted linear regression method, a 
different local approximation is calculated for each 
distinct query instance. In this method, weights are 
determined by minimizing the error in prediction 
using the training examples near the query instance. 
For error minimization, Quasi-Newton method and 
genetic algorithm were used in the current work. The 
Quasi-Newton method uses gradient to search for the 
minimum point of the objective function while 
genetic algorithm uses parallel search technique to 
find the optimal point. 
     A detail description of all these IBR methods can 
be found in [3] and [5]. 
     Nine IBR models for tripping-in data and nine 
IBR models for drilling data were developed. The 
basic structure of these models is shown in Fig 2. 
Every model worked on the basis of an instance base. 
It was a database containing both training examples 
and the query instances. The instance base was 
formed with the help of MS Excel. The Euclidean 
distance between the query instance and a training 
example was determined using two attributes (DBTM 
and mud flow rate) for every query instance. The 
Euclidean distance was used to find the nearest 
neighbors and also to calculate the weights for every 
training example for distance-weighted models. For 
locally weighted models, the attributes were 
weighted. 

     Fig 2. Basic structure of IBR models 

     Among the nine IBR models developed for each 
of the two groups of data, four models were based on 
the k-Nearest neighbor learning algorithm, three were 
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based on distance-weighted learning algorithm and 
two were based on locally weighted linear regression.  
     The locally weighted linear regression model was 
of the following form: 

             1 2oSPP w w DBTM w Q= + +                      (1) 

     The weights were found by minimizing the 
following distance weighted error function for the 
three nearest neighbors of the query instance in the 
Euclidean space: 

23

1

( )
( , )

measuredi estimatei

i q i

SPP SPP
Error

d x x=

−
= ∑                (2) 

     Here measurediSPP  is the measured SPP and 

estimateiSPP  is the estimated SPP for the ith nearest 
neighbor. For error minimization, two MATLAB 
functions fminunc() and ga() were used. The function 
fminunc() uses Quasi-Newton algorithm while ga() 
uses genetic algorithm for minimizing the error 
function. The weights corresponding to minimum 
error were used in Eq. (1) for estimating SPP for the 
query instance. 
     A detail of the IBR models used can be found in 
[3].      

4. RESULTS AND DISCUSSION      
     The results obtained for tripping-in data and 
drilling data are presented in this section’s two 
subsections. 

4.1 Tripping-in Data 
     The absolute error in predicted SPP for the 153 
tripping-in query instances is presented in Fig 3. 

Among the nine IBR models, Model1KT based on k-
nearest neighbor learning algorithm outperformed the 
other three k-nearest neighbor models. Similarly, 
Model1WT among the distance-weighted models and 
Model2LGT among the linear regression models 
provided good estimates of SPP. For Model1KT, the 
data were not normalized (i.e. dividing all the values 
of an attribute by the largest value among them). The 
model also did not include updating the training 
example database (i.e. addition of the current query 
instance to the training example database). 
Model1WT estimated SPP for the query instance 
based on the weighted average of the three nearest 
neighbors of the query instance. Model2LGT 
predicted SPP using Eq. 1. The optimum weights 
were found by genetic algorithm using the three 
nearest neighbors of the query instance. Model1WT 
and Model2LGT used normalized data. They also 
updated the training example database after 
estimating the SPP for a query instance.  
     Fig 3 shows that the regression models predicted 
SPP with absolute errors in the range of zero to 20 
bars while the IBR models predicted SPP with 
absolute errors in the range of zero to 10 bars for 
most of the query instances. A close observation of 
the error plots reveals that the regression models 
produced SPP estimates with errors greater than three 
bars for a large number of instances. It is 92 for 
Modle1, 116 for Model2, 108 for Model3 and 91 for 
Model4. On the other hand, Model1KT produced 
SPP estimates with errors greater than three bars for 
42 query instances, Model1WT did it for 41 instances 
and Model2LGT did the same for 45 instances. These 
numbers are approximately half of those observed for 
the four regression models.  

Fig 3. Comparison of absolute error for (a) tripping-in regression models and (b) tripping-in IBR models 
                         (a)                                                                                          (b) 
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4.2 Drilling Data 
     Similar results were obtained for the drilling data. 
The results are shown in Fig 4. Fig 4 shows that the 
highest absolute error in predicted SPP was well over 
50 bars for regression models while for IBR models it 
was around 35 bars. A close observation of the two 
error plots reveals that Model1D produced SPP 
estimates with absolute error greater than three bars 
for 80 query instances, Model2D did it for 101 
instances, Model3D did the same for 92 instances and 
Model4D did it for 68 query instances. On the other 
hand, Model1KD produced SPP estimates with 
absolute error greater than three bars for 30 instances, 
for Model1WD it was 33 and for Model2LGD this 
number was 39. All these numbers are even less than 
half of those for the regression models. This indicates 
the credibility of IBR models as better estimators of 
SPP than the regression models for the present data. 

5. CONCLUSION AND FURTHER 
RECOMMENDATIONS 
     Due to the limitations of the conventional 
approach, alternative methods for SPP estimation 
using real time data were developed. IBR is one such 
method. In this paper, IBR models along with 
regression models are presented. For the real time 
data used in this paper, IBR models produced more 
accurate estimates of SPP compared to the regression 
models tried.  
     However, the results obtained are limited by the 
fact that the data used were collected while drilling 
the deviated segment of a well using an oil based 
mud. Therefore, it is recommended that the 
regression analysis and IBR approach should be tried 
with real time data collected while drilling wells in 
different geological locations using different drilling 
muds.  Also, other machine learning methods such as 
case-based reasoning (CBR) and neural network can 
be tried. Furthermore, the results obtained by the IBR 

approach can be compared with those obtained by the 
CBR and neural network approach.  
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 8. NOMENCLATURE 
 

Symbol Meaning Unit 
Q Mud flow rate (m3/s) 

DBTM Bit measured depth (m) 
N Number of training examples dimensionless

wo, w1, w2 Weights  dimensionless
( , )q id x x Euclidean distance between 

normalized query instance and 
training example 

dimensionless

 

Fig 4. Comparison of absolute error for (a) drilling regression models and (b) drilling IBR models
                         (a)                                                                                          (b) 


