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1. INTRODUCTION 
    The flows through curved and helical ducts are 
encountered in various industrial processes. Flows in 
separation processes, heat exchangers, physiological 
systems, chemical processes, medical equipments and 
centrifugal compressors are examples of such processes. 
At first, Dean[1] formulated the curved pipe problem in 
mathematical terms under the fully developed flow 
conditions. He found the two-vortex counter rotating 
secondary flow patterns originated by the centrifugal 
force. Since then, there have been a lot of theoretical and 
experimental work concerning this flow and the review 
articles by Berger et al.[2] and Ito[3] may be referred. 
Cheng et al.[4] reported two-vortex secondary flow 
patterns in a curved duct with square cross-section by 
using finite difference method. One of the interesting 
phenomena of flow through the curved duct is the 
bifurcation of the flow. Yang and Wang[5] studied 
numerically the bifurcation structure and stability of the 
solutions of fully developed viscous flow in curved 
square duct. The governing equations were discretized 
by using the finite volume method. 
     The helical duct has been used extensively in various 
industrial applications to enhance the rate of heat, mass 
and momentum transfers. In order to improve the 
performance of these devices, an accurate and reliable 
analysis of the flow in the helical duct is necessary, 
which can also be used as the basis for studying the flow 
in other devices. The geometry of a helical pipe, as 
shown in Fig 1, is characterized by the curvature and

 torsion. These non-dimensional curvature and torsion 

are defined respectively as, 2 2 ,r
r

κ
α
′

′ =
′ ′+

 

2 2r
ατ
α
′

′ =
′ ′+

 where r′  is the radius of the helix 

and
2

pitchα
π

′ = . The secondary flow caused by the 

centrifugal force due to curvature can be affected by 
torsion. If the pitch is equals to zero, then the torsion is 
equals to zero and the helical duct reduces to a toroidally 
curved duct. In a helical duct the centrifugal force plays 
an important role in creating a pair of vortices. However, 
above a critical value of the Dean 

number
32

n
aD Gκ

μυ
⎛ ⎞′

=⎜ ⎟⎜ ⎟
⎝ ⎠

, the secondary flow is 

changed from the appearance of several pair of vortices 
structure, due to the balance of the acting centrifugal and 
pressure gradient forces on the flow. The torsion causes 
the distortion in the symmetry of the flow, enlarging the 
upper vortex of the secondary flow at the expense of the 
lower vortex. Wang[6] was the pioneer author who 
formulated the helical pipe flow for circular cross-section 
using non-orthogonal co-ordinates and analyzed the flow 
for small curvature and torsion by taking series 
expansions of these parameters. He found that the 
secondary flow is a single vortex cell. There have been 
very few studies regarding the torsion effect on the flow 
in a helical square duct or rectangular duct. The effect of 
small torsion on the helical square ducts has been 
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investigated by Bolinder and sunden[7] and Sakalis et 
al.[8]. Recently, Bhattacharjee and Alam[9] investigated 
the torsion effect on fluid flow in a helical square duct. 
They found the bifurcation flow structure. They also 
found that multiple pair of vortices appeared on the 
bifurcation areas. Again, Wang and Andrews[10] 
investigated the flow in a helical rectangular duct. They 
studied the effect of the pitch ratio, pressure gradient and 
curvature ratio on the velocity distribution and fluid 
resistance in fully developed laminar flow of an 
incompressible fluid in a helical rectangular duct.  
     The main object of the present study is to investigate 
numerically the flow through a left-handed helical 
rectangular duct for a wide range of the Dean number, 
torsion and curvature. The non-dimensional governing 
equations have been solved numerically by employing 
spectral method as a main tool.  
 
2. Governing Equations 
     A viscous incompressible fully developed steady flow 
through a left-handed helical duct with rectangular 
cross-section as shown in Figure 1 is considered. Let 2a  
and 2b  be the width and the height of the cross–section 
respectively. 
 

 
 
 

Thus, the Continuity and Navier-Stokes equations in 
terms of curvilinear co-ordinates are given by 
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where the physical components of ∇∧q  are defined by 
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Let the centre line of the duct be the smooth space 
curve 0 ( )sR , where the parameter ' 's  is the arc-length. 
The unit tangent T , normal N and binormal B vectors of 
the space curve 0 ( )sR are given by the relations 
 

0 1( ) = , ( ) , ( )d ds s s
ds dsκ

= = ∧
R TT N B T N  (4) 

 
The curvature κ  and torsion τ  are determined by the 

Serret-Frenet formulae 
 

, ,d d d
ds ds ds

κ τ κ τ= = − = −
T N ΒN B T N  (5) 

 
Let x  be a coordinate along the direction of N%  and 

y  be a coordinate along the direction of B% . Here N%  

and B% are the orthogonal unit vectors obtained by a 
rotation of the physical basis vector N  and B  with the 
angle ( )sσ in the −N B  plane which is shown in Fig 2. 
Therefore, we have  
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The position vector R of any points in the duct is thus 

written in the following form: 
 

0( , , ) ( ) ( ) ( )s x y s x s y s= + +R R N B% %   (7) 
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Fig 2. Various vectors related to the centre line of a duct.

Fig 1. Helical duct with rectangular cross-section.
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     The variables are non-dimensionalised by the 
characteristic length a  (half width) and the kinematic 
viscosity υ  as follows: 
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 (8) 

Here , ,w u v′ ′ ′  are non-dimensional velocity 
components in the direction of , ,s x y′ ′ ′  respectively and 

, ,p κ τ′ ′ ′  are the non-dimensional pressure, curvature 
and torsion respectively. The variables without prime are 
the dimensional quantities. For the incompressible fully 
developed flow, the velocity is independent of s′ .We 
further introduce a new variable y yγ′ = , where 

b
a

γ ⎛ ⎞=⎜ ⎟
⎝ ⎠

is the aspect ratio of the cross-section. Since the 

flow field is uniform in the axial direction, we can 
introduce a stream function ( , )x yψ ψ ′ ′= such that 
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where 1J xκ ′ ′= − . 
 

Therefore, the basic equations for w′ and ψ are 
derived from the Navier-Stokes equations as follows: 
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3. METHOD OF NUMERICAL CALCULATIONS 
    The spectral method is applied in the present 
numerical calculation. The expansion by polynomial 
functions is utilized to obtain steady solution. Variables 
are expanded in series of functions consisting of 
Chebyshev polynomials. We expand 
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where M and N  are the truncation numbers along x′  
and y  direction respectively and  and 

mn mn
w ψ  are the 

coefficients of expansion. 
The expansion functions ( ) and ( )n nx x′ ′Φ Ψ  are 

expressed as 
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where 1( ) cos( cos ( ))nC x n x−′ ′= is the n-th order 
Chebyshev polynomial.               
     In order to obtain the solutions for and m n m nw ψ , the 
expansion series (12) are then substituted into the basic 
equations (10) and (11) and apply the collocation method 
(Gottlieb and Orszag[11]), then we obtain the non-linear 
algebraic equations for  and m n m nw ψ .The collocation 
points  are taken as: 
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The non-linear algebraic equations for and m n m nw ψ  

are solved by the Newton-Raphson method starting with 
an initial guess of the solution.               

The convergence is assured by taking 810p
−∈ < , where 

subscript p  denotes the iteration number and 
p

∈ is 
defined as 

( ) ( )2 2( 1) ( ) ( 1) ( )
p

0 0

M N
p p p p

mn mn mn mn
m n

w w+ +

= =

∈ = − + Ψ −Ψ⎡ ⎤
⎣ ⎦∑∑  (14) 

 
4. FLUX THROUGH THE HELICAL DUCT 
     The dimensional total flux, Q′  through the duct is 
obtained as: 
 

a a

a a
Q w dxdy

γ

γ− −
′ ′= ∫ ∫  (15) 

 
where, w′  is the component of the velocity normal to 

x y′ ′−  plane and the dimensionless total flux is 
 

1 1

1 1
( , )Q w x y dx d yγ

− −
′ ′ ′= ∫ ∫  (16) 

 
The non-dimensional Resistance coefficient 

( )cR takes the following form 
 

( )
21 1

1 1

128 2 1
1

,
c n

kR D

w x y dx dy

γ
γ

− −

=
+ ⎛ ⎞′ ′⎜ ⎟

⎝ ⎠∫ ∫
 (17) 

 
5. RESULTS AND DISCUSSION 
     Left-handed helical duct with rectangular 
cross-section has been taken to investigate the flow 
characteristics for wide range of Dean number ( )nD , 

fixed curvature ( )0.1κ ′ = , different torsions 

( )0.0,0.1τ ′ =  and aspect ratio ( )1.5γ = . In this article, 
the left side is the outer wall and the right side is the inner 
wall of the cross-section of the duct. 
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5.1 Case I ( 0.1, 0.0κ τ′ ′= =  and )1.5γ =   

Fig. 3 shows that the resistance coefficient ( )cR  

through the duct versus Dean number ( )nD  and this is 
called solution curve. In this solution curve two 
bifurcation areas have been obtained which are the most 
important characteristic of the flow in the duct. After a 
comprehensive study over a parametric space, steady 
solution curve is obtained for 0.1, 0.0, 1.5κ τ γ′ ′= = =  
and Dean number in the range of 0 4258nD≤ ≤ . In 
order to visualize the bifurcation areas more explicitly 
the enlargement of the solution curve areas are necessary. 
The above mentioned numerical solution curve areas are 
obtained by arc-length method as discussed in Keller et. 
al [12]. In fig. 3 it is seen that resistance coefficient 
decreases as Dean number increases along the curves S11, 
S13, S21 & S23 and resistance coefficient increases as 

ψ
 
 
 
 
 
 
w′

Fig 7. Stream lines of the secondary flow and
contour plots of the axial flow on the solution
curve for 1.5γ = , 0.1κ ′ =  and 0.1τ ′ =  for
various Dean number.

nD  2000 4000 7000 

Fig 6. Solution Curve of steady flow through a helical 
rectangular duct for 0.1κ ′ = , 1.50γ = 0.1τ ′ =
and 0 7134nD≤ ≤ .

Q

   Dn 

ψ
 
 
 
 
 
 
w′
 

S21            S22    S23

Fig 5. Stream lines of the secondary flow and contour
plots of the axial flow on solution curves at

1005nD = . 
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Bifurcation

 S11 

   Dn 

 S22 
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  Rc 
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Fig 3. Solution Curve for steady fluid flow in Curved 
duct for 0.1, 1.5, 0.1κ γ τ′ ′= = = and 0 4258nD≤ ≤ . 

ψ
 
 
 
 
 
 
w′
 

S11            S12    S13

Fig 4. Stream lines of the secondary flow and contour
plots of the axial flow on solution curves at

706nD = . 
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Dean number decreases along the curves S12, S22 in the 
bifurcation areas. From fig. 4 it is seen that the secondary 
flow patterns consists of two-vortex, four-vortex with 
two minor very weak vortices and four-vortex with two 
minor weak vortices for same Dean number 706nD = . It 
is clear that weak vortices have been created near the 
outer wall of the cross-section and axial flow is gradually 
shifted towards the outer wall of the cross-section. In 
fig.5 It is seen that four-vortex secondary flow patterns 
are found along the curve S21 while six-vortex secondary 
flow patterns are observed along the curves S22 and S23 
for same Dean number 1005nD = . The axial flow is 
shifted more quickly to the outer wall of the cross-section. 
It is also seen that axial flow is stronger near the outer 
wall on the curves S22 and S23. 
 
5.2 Case II ( 0.1, 0.1κ τ′ ′= =  and )1.5γ =  
    The solution curve (Dean number versus flux) is 
depicted in the fig. 6. In this figure it is seen that steady 
solutions are found in the range of 0 7134nD≤ ≤ . It is 
also observed that the flux increases as Dean number 
increases. The secondary and axial flow patterns on the 
solution curve are shown in fig. 7. In these flow patterns 
ψ  and w′  are drawn with 1.75ψΔ =  and 90.0w′Δ = . 
Two-vortex non-symmetric secondary flow patterns are 
found on the solution curve for several Dean numbers 
and maximum axial flow is shifted to the lower part of 
the outer wall of the cross-section. 
 
6. CONCLUSIONS 

According to the present results, we can draw the 
following Concluding remarks: 

• Several pair of vortices has been found in the 
bifurcation areas due to centrifugal and 
pressure gradient forces. 

• Axial flow is shifted quickly to the outer wall 
of the cross-section for large Dean number. 

• Torsion causes the distortion of the symmetry 
of the flow enlarging the upper vortex to the 
expenses of the lower vortex. 

• The multiple solutions have not been found for 
torsion 0.1 and aspect ratio 1.5. 
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8. NOMENCLATURE 
 

Symbol Meaning 
nD  Dean number 
γ Aspect ratio 
κ ′  Dimensionless curvature 
τ ′  Dimensionless torsion 

w′ , u′ , v′  Dimensionless velocity along 
axial, radial, circumferential 
direction respectively 

, ,s x y′ ′ ′  Dimensionless length coordinates 
along axial, radial, circumferential 
direction respectively 

ψ Stream function 
cR  Resistance coefficient 

Q  Dimensionless total flux 
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