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1. INTRODUCTION 

Fluid flow in curved pipes is of considerable 
importance. It has large applications in chemical and 
mechanical engineering. Curved tube geometries are also 
found in bio-fluid-mechanics. It is extensively used in 
piping systems such as intakes in aircraft.  

In case of curved pipe centrifugal force originates due 
to the curvature of the pipe. For flow through a straight 
pipe, the axial velocity in the core region is much master 
than that near the wall which is due to no-slip condition 
at the wall. But when the fluid flows through a curved 
pipe, the particles experience centrifugal force which 
brings about the secondary flow. This was first noticed 
by Williams et al.[1]. They also found that the location of 
the maximum axial velocity is shifted towards the outer 
wall as an effect of the occurrence of secondary flow. 

Dean [2,3] was the foremost author to formulate the 
problem theoretically. Here incompressible viscous fluid 
flow under constant pressure gradient force has been 
investigated and the flow is found to be dependent on a 
parameter termed as Dean number nD  given by 
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= ; where, μ is the coefficient of 

viscosity, υ  is the kinematic viscosity, G  is the constant 
pressure gradient force, L  is the radius of the pipe and 
a  is the radius of the cross-section. 

After this, a lot of research works regarding fully 
developed flow have been carried out at different times. 
But in practice the flow is not always fully developed. So 
developing or entry flow is of utmost importance 
specially incase of physiological phenomena. Austin [4], 
Patankar et al. [5] and Humphery [6] carried out study on 
developing flow through curved pipe beginning with 

Poiseuille flow at the inlet  using finite-difference 
technique. Singh [7] obtained a series solution for the 
entry-flow problem. He found a saddle-point-like 
stagnation point and a node-like sink near and at the 
centre of the pipe. Yao and Berger [8] obtained a solution 
for the flow from the entry to the fully developed region. 
Soh and Berger [9] solved elliptic Navier-Stokes 
equation for entrance flow into a curved pipe using the 
artificial compressibility technique. Secondary flow 
separation was observed near the inner wall in the 
developing region of the curved pipe.  

But if the curved pipe rotates, in addition to 
centrifugal force the fluid experience Coriolis force. The 
rotation is considered to be positive if it is in such a 
direction that the Coriolis force results a positive effect to 
that of the centrifugal force and this case is known as 
co-rotating case. Otherwise the rotation is considered to 
be negative and is known as counter rotating case. These 
types of rotating ducts are used in cooling systems for 
conductors of electric generators.  

Since the pipelines have more or less a bent or a 
curved section, it is interesting to investigate the 
combined effects of curvature and rotation, which are 
relevant to the flow in rotating curved ducts. Miyazaki 
[10] examined the solutions for co-rotating case. Ito and 
Motai [11] investigated both co-rotating and counter 
rotating  cases. At this time the concept of bifurcation 
was not so rich. Later Daskopoulos and Lenhoff [12] 
showed the bifurcation study of the flow combined with 
curvature and rotation.  

In this paper, our aim is to study the entrance flow 
through a curved pipe of circular cross-section rotating at 
a constant angular velocity about an axis passing through 
the center of curvature of the pipe and perpendicular to 
the plane of the pipe. 
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2. GOVERNING EQUATIONS 

A curved pipe of uniform circular cross-section has 
been considered. The pipe is rotating at a constant 
angular velocity about an axis passing through the centre 
of curvature of the pipe and perpendicular to the plane 
containing the axis of the pipe. The radius of the pipe is 
R  and the radius of the cross-section is a . Toroidal 
coordinate system ( )sr ′′ ,,θ  has been considered to 
describe the motion of the fluid particles in the pipe 
which is illustrated in Fig 1. wvu ′′′ ,,  are the velocity 
components along sr ′′ ,,θ directions respectively, p′  is 
the pressure and ρ  is the constant density of the fluid. 

 

 
Introducing the non-dimensional variables, 
 

a
rr

W
pp

W
ww

W
vv

W
uu

′
=

′
=

′
=

′
=

′
= ,,,, 2

oooo ρ
 

 
we get the following momentum equations, 
 
radial momentum equation, 
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circumferential momentum equation, 
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 (2) 
Axial momentum equation, 

( ) ( ) ( ) ( )
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 (3) 
and the continuity equation takes the form,  
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3. BOUNDARY CONDITIONS 

In the present study the fluid flow boundary is 
considered to be consists of three regions: the inlet 
cross-section where the fluid is entering, the rigid wall 
surrounding the fluid and the cross-section far 
downstream where the flow is assumed to be fully 
developed. 

The initial conditions at the inlet is considered as,  
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Due to the no-slip condition, all the velocity 

components vanish at the rigid boundary, i.e., 
 
( ) ( ) ( ) 0,,1,,1,,1 === swsvsu θθθ  

 
At far down stream when the flow gets fully 
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4. FINITE DIFFERENCE FORMULATIONS 

To rewrite the momentum equations (1-3) and 4 into a 
practical finite-difference scheme of computation , the 
grid arrangement shown in Fig 2 and Fig 3 has been 
chosen. The grid has been arranged in such a way that 
pressure is defined at the centre of a cell and wvu ,,  are 
defined at different positions on the pressure cell 
boundaries. 

 

Fig 1. Toroidal coordinate system for a curved pipe 
with circular cross-section. 
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Then the momentum equations in wvu ,, -directions 

reduces to, 
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respectively. And the continuity equation reduces to, 
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The accuracy is assured by taking 610−<DIF , where 
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5. RESULTS AND DISCUSSION 

Calculations were carried out for 900&242Re =  
and 1.0=δ  in a computational mesh extending from 
inlet( o0 ) to the outlet( o180 ). 
 
5.1 Secondary Flow Development 

Vector plots of the secondary flow have been shown 
in Fig 4(a) and 4(b) for 900&242Re =  respectively at 
different positions. The secondary flow is set up just after 
entering the inlet due to the effect of centrifugal force. 
Most of the particles get radial velocity. Circumferential 
velocity is greater for the particles near the upper and 
lower boundary due to the friction with the wall. Also the 
velocity of the particles at the centre of cross-section is 
radially outward for the effect of centrifugal force. As the 
flow goes downstream the secondary velocity of the 
particles near the centre of the cross-section increase in 
the direction of the centrifugal force and the flow in the 
core region moves radially outward along the horizontal 
plane passing through the centre of the cross-section. At 
the same time, the particles near the upper and lower 
boundary experience high circumferential velocity in the 
direction opposite to the velocity of the particles at the 
core region. As a result, two vortex secondary flow is set 
up, which is symmetric about the horizontal plane 
passing through the centre of cross-section. 

Increase in Reynold’s number decrease the velocity 
of he particles near the core region remarkably. For 

900Re =  the secondary velocity of the particles in the 
inner half is higher than the velocity of the particles at the 
centre and outer half of the cross-section. As a result, two 
vortices are set up in the inner half. The strength of these 
vortices is lower than that of the vortices for 242Re = . 

Fig 3. Grid system in the horizontal plane 
passing through the axis of the pipe. 

Fig 2. Grid system in the cross-section. 
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When rotation comes to play, centrifugal force and 

Coriolis force work simultaneously in addition to 
pressure gradient force. The Coriolis force breaks down 
the symmetry. The particles get high circumferential 
velocity due to Coriolis force. As the flow proceed 
downstream a vortex originates form the lower portion 
and two vortex secondary flow is set up. Gradually the 
lower vortex gets stronger. At far downstream the 
centrifugal force prevails over Coriolis force and the 
secondary flow become symmetric. If rotation is 
increased the Coriolis force increases and consequently 
the flow needs to traverse more towards downstream to 
be symmetric. For high rotation ( )10=rT  remain 

asymmetric even at the outlet. 
5.2 Axial Flow Development 

The contour plots of the axial velocity has been 
shown in Fig 5(a) and 5(b) for 900&242Re =  
respectively. As the flow enters the pipe boundary layer 
begins to develop. Boundary layer near the inner wall 
develops faster than that at the outer wall. And with the 
development of the flow the strength of the axial flow is 
increased and is shifted towards the outer wall of the 
cross-section, which is effect of the centrifugal force due 
to curvature. The axial flow is symmetric about the plane 
passing through the centre of cross-section at the absence 
of rotation. 
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Fig 4a. Vector plots of the secondary flow for 242=eR  and 1.0=δ  

Fig 4b. Vector plots of the secondary flow for 900=eR  and 1.0=δ  
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When the pipe rotates the symmetry breaks down. 
Due to Coriolis force the strength of the axial flow is 
shifted towards the lower portion of the cross-section. 
As the flow proceeds downstream the strength of the 
axial flow is shifted towards the middle of the outer half. 
Finally the centrifugal force dominates the Coriolis 
force and symmetry is attained. But for higher rotation 
the Coriolis force is too high to be dominated by the 
centrifugal force. As a result symmetry is not attained 
finally.  

For high rotation initially two peaked axial velocity 
is found. With the development of the flow the outer 

peak diminishes while the inner peak develops and 
gradually shifted outward. Finally, it took place 
diagonally between the upper part of the outer half and 
lower part of the inner half. 

For 900Re =  symmetric axial velocity profile has 
been found which is strong in the outer half when 
rotation is absent. When 10=rT  two peaked axial 
velocity is found, one peak in the inner half and another 
in the outer half. With the development of the flow the 
vortices took place in the upper and lower half of the 
cross-section respectively. 

 

 

α = 250 500 750 1000 1250 1500 1750 
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Fig 5a. Contour plots of the axial flow for 242=eR  and 1.0=δ  

Fig 5b. Contour plots of the axial flow for 900=eR  and 1.0=δ  
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7. NOMENCLATURE 
 

Symbol Meaning 
u,v,w Dimensionless velocity 

components along radial, 
circumferential and axial direction 
respectively 

Re Reynold’s Number 
Tr Taylor Number 
δ  Dimensionless curvature 
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