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1. INTRODUCTION   
       The study of flows through curved ducts and 
channels has been and continuous to be an area of 
paramount interest of many researchers because of the 
diversity of their practical applications in fluids 
engineering, such as in fluid transportation, turbo 
machinery, refrigeration, air conditioning systems, heat 
exchangers, chemical reactors, ventilators, centrifugal 
pumps, internal combustion engines and blade- to-blade 
passage for cooling system in modern gas turbines. 
Blood flow in the human and other animals also 
represents an important application of this subject 
because of the curvatures of many blood vessels, 
particularly the aorta.  
     Considering the non-linear nature of the 
Navier-Stokes equation, the existence of multiple 
solutions does not come as a surprise. However, an early 
complete bifurcation study of fully developed flows in a 
curved duct was conducted by Winters (1987). Yanase et 
al., (2005) performed numerical investigation of 
isothermal and non-isothermal flows through a curved 
duct of rectangular cross-section. Mondal et al. (2006) 
performed numerical prediction of non-isothermal flows 
through a curved square duct over a wide range of the 
curvature and the Dean number. Recently, Mondal et al. 
(2007) numerically investigated the bifurcation diagram 
for two-dimensional steady flow through a curved square 
duct. Very recently, Mondal et al. (2009) performed 
bifurcation structure of the steady solutions and 
investigated linear stability of the solutions for the flow 
through a curved rectangular duct.  

            
     Time dependent analysis of fully developed curved 
duct flows was initiated by Yanase and Nishiyama (1988) 
for a rectangular cross section. Mondal et al. (2007) 
performed numerical prediction of the solution structure, 
stability and transitions of isothermal flow through a 
curved square duct. They showed that there is a close 
relationship between unsteady solutions and the 
bifurcation diagram of steady solutions. To the best of the 
authors’ knowledge, however, there has not yet been 
done any substantial work studying the effects of aspect 
ratio on unsteady solutions through a curved rectangular 
duct flows. This paper is, therefore, an attempt, to fill up 
this gap with a view to study the non-linear nature of the 
unsteady solutions for various aspect ratios, because this 
type of flow of often encountered in engineering 
applications. 
     In the present study, a numerical result is presented 
for the fully developed two-dimensional flow of viscous 
incompressible fluid through a curved rectangular duct. 
The main objective of the present study is to obtain 
solution structure of the steady solutions and to discuss 
the unsteady flow behavior through a curved rectangular 
channel. 
 
2. MATHEMATICAL FORMULATION 
      Consider a viscous incompressible fluid streaming 
through a curved duct with rectangular cross-sections. 
The coordinate system with relevant notations is shown 
in Fig. 1. It assumed that the flow is uniform in the 
z-direction which is driven by a constant pressure 
gradient G along the centre of the duct. u, v and w are the 
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velocity components in the x-, y- and z-directions, 
respectively. The variables are non-dimensionalized by 
using the representative length and the representative 
velocity. 

 
Fig  1.  Coordinate system of the curved rectangular 

duct. 
 

The sectional stream function ( )yx,ψ  is introduced in 
the x- and y- directions as 
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Then the basic equations for ψandw  are derived 
from the Navier-Stockes equations as 
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and Dn is Dean number defined as 
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 l is the aspect ratio defined as 
d
hl = .                                    

The no-slip boundary conditions for w  and ψ  are used 
as:                
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3. NUMERICAL CALCULATION 
     In order to obtain the numerical solutions, spectral 
method is used. The main objective of the method is to 
use the expansion of the polynomial functions that is the 
variables are expanded in the series of functions 
consisting of Chebyshev polynomials. The expansion 
function )(xnφ  and  )(xnψ  are expressed as  
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where ))(coscos()( 1 xnxCn
−=  is the thn  order 

Chebyshev polynomial. ),,( tyxw and ),,( tyxψ  

are expanded in terms of the expansion functions )(xnφ  

and )(xnψ  as: 
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where M  and N  are the truncation numbers in the x  
and y  directions respectively. Steady solutions are 
obtained by the Newton-Raphson iteration method. 
Finally, for the unsteady solutions, Crank-Nicolson and 
Adams-Bashforth methods together with the function 
expansion and collocation methods are applied.  
 
4. RESISTANT CO-EFFICIENT  
     The resistant coefficient λ  is used as the 
representative quantity of the flow state and is generally 
used in fluids engineering, defined as  
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where quantities with an *
1P  be asterisk denote 

dimensional ones, 〉〈 stands for the mean over the cross 
section of the duct and  

( ) ( )dlddlddh 44/224* +×=  is the hydraulic 

diameter. The main axial velocity 〉〈 *ω  is calculated 
by  
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where vd /2 * 〉〈=〉〈 ωδω .  
 
5. RESULTS AND DISCUSSION 
 

5.1 Case I: Aspect Ratio L = 0.5 
5.1.1 Solution Structure of the Steady Solutions 
     We obtained a single branch of steady solution for the 
aspect ratio l = 0.5. The solution branch is shown in Fig. 
2(a). It is found that the steady solution branch consists 
of symmetric two- and four-vortex solutions. It is also 
found that as Dn increases, the centrifugal force 
becomes strong and consequently the axial flow shifted 
to the outer bend of the wall.   

 
Fig 2. Steady solution branches for the aspect ratio  

 

 
5.1.2 Unsteady Solutions 
     To investigate non-linear behavior of the unsteady 
solutions, time-evolution calculation of the resistance 
co-efficient λ is performed. Since the steady solution is 
stable for 6404≤Dn (Mondal et al., 2009), we 
performed unsteady solutions for Dn > 6404. Time 
evolution of λ for 6500=Dn  is shown in Fig. 3(a), 
where it is found that the flow is multi-periodic. Then we 
draw some contours of secondary flow and axial flow 
distribution in Fig. 3(b), where we observe that the 
unsteady flow oscillates between symmetric two- and 
four-vortex solutions.  

 
 
 

 
 
 
 
 
 
 
 
 

(a) 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 

(b) 
Fig  3.(a) Time evolution of  λ for 6500=Dn  and l = 

0.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom). 

 
 
 
 

 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
      t          11.69                11.75                 11.80                        
                                           (b) 
Fig. 4. (a) Time evolution of λ for 10000=Dn  and l = 
0.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom). 
 
     Then we performed time evolution of λ for 

10000=Dn  as shown in Fig 4(a). It is found that the 
flow is multi-periodic for 10000=Dn . Contours of 
some secondary flow patterns and axial flow 
distributions are shown in Fig. 4(b), where it is seen that 
the multi-periodic oscillation at 10000=Dn  oscillates 
between asymmetric two-, three- and four-vortex 
solutions.  
 
 
5.2 Case II: Aspect Ratio L = 1.5 
5.2.1 Solution Structure of the Steady Solutions 
     We obtained four branches of steady solutions for the 
aspect ratio l = 1.5. The bifurcation diagram is shown in 
Fig. 5(a). It is found that there exists a bifurcating 
relationship between the first and second steady solution 
branches. The second branch bifurcates from the second 
branch by a sub-critical pitchfork bifurcation. We 
obtained two-, four-, six-, eight-, ten- and twelve-vortex 
solutions on various branches. Figure 5(b) shows 
contours of some secondary flow patterns and axial flow 
distribution at various Dn.     
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Dn       755         800        1000          2000        4000 
                                            (b) 

Fig  5. (a) Bifurcation structure of steady solutions for  l = 
1.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom) for l = 1.5. 
 
5.2.2 Unsteady Solutions  
     Unsteady solutions ion is stable for 625≤Dn , we 
obtained unsteady solutions. 
     As the steady solut for Dn > 625. We performed time 
evolution of λ for 1225=Dn as shown in Fig. 6(a). It is 
found that the flow is time periodic. Contours of 
secondary flow and axial flow distribution are shown in 
Fig. 6(b), where it is seen that the periodic solution at 

1225=Dn oscillates between symmetric four-vortex 
solutions.  
 
 
 
 
 
 
 
 
 
 
 
 
                                               
                                               (a) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
                   
                  9.33          9.35       9.37          9.40 
                                           (b) 
Fig 6. (a) Time evolution of  λ for 1225=Dn  and l = 

1.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom) 

 
     Then we performed unsteady solution for 

1230=Dn as shown in Fig. 7(a). It is found that the 
flow oscillates irregularly, that is the flow is chaotic. 
Secondary flow patterns and axial flow distribution is 
shown in Fig. 7(b), where we find that the unsteady flow 
oscillates between two- and multi-vortex solutions. Since 
the nature of the flow characteristics changes between 
Dn = 1225 and Dn = 1230, a transition from periodic to 
chaotic state occurs between Dn = 1225 and Dn = 1230 
for the aspect ratio l = 1.5. 
                           
 
 
 
 
 
 
 
 
 
 
 
                                              (a) 
 
 
 
 
 
 
 
 
 
 
 
          t         12.00        12.40       12.80       13.80                  
                                               (b) 
Fig 7. (a) Time evolution of  λ for 1230=Dn  and l = 

1.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom). 
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          t        4.20         4.60         5.00         6.00   
                                          (b)             
Fig 8. (a) Time evolution of  λ for 3000=Dn  and l = 
1.5. (b) Secondary flow patterns (top) and axial flow 
distribution (bottom) 

 
     Finally, we performed time evolution calculations of 
λ for 3000=Dn as shown in Fig. 8(a). It is found that 
the flow is chaotic. Then contours of some secondary 
flow patterns and axial flow distributions are shown in 
Fig. 8(b). It is found that the chaotic solution at 

3000=Dn  oscillates between asymmetric two- and 
multi-vortex solutions. The chaotic solution at Dn = 1230 
is called weak chaos and that for Dn = 3000 strong chaos 
(Mondal et al., 2007). 
 
6. CONCLUSIONS 
     In this study, we obtained solution structure of the 
steady solutions as well as unsteady solutions for the 
flow through a curved rectangular duct for the aspect 
ratios 5.15.0 ≤≤ l . We obtained a number of steady 
solution branches with two- and multi-vortex solution on 
various branches. Time evolution calculation of the 
unsteady solutions for the aspect ratio 0.5 shows that the 
flow is periodic or multi-periodic for 6404 <Dn< 10000, 
which oscillates between asymmetric two-, three- and 
four- vortex solutions. Then we studied time evolution of 
the unsteady solutions for Dn > 625 for the aspect ratio l 
= 1.5, and it is found that the flow is periodic for 

1225=Dn  but chaotic for 1230=Dn . Thus the 
transition from periodic to chaotic state occurs between 
Dn = 1225 and 1230. We also obtained chaotic solution 
at large values of the Dean number and it is found that 
chaotic solution becomes strong at large Dn. It is found 
that as the chaotic solution becomes strong, the number 
of secondary vortices also increases and the axial 
velocity shifted at the outer wall of the duct. 
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