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1. INTRODUCTION 
     The study of flows and heat transfer through a curved 
duct is of fundamental interest because of its importance 
in chemical, mechanical and biological engineering. Due 
to engineering applications and their intricacy, the flow 
in a rotating curved duct has become one of the most 
challenging research fields of fluid mechanics. Since 
rotating machines were introduced into engineering 
applications, such as rotating systems, gas turbines, 
electric generators, heat exchangers, cooling system and 
some separation processes, scientists have paid 
considerable attention to study rotating curved channel 
flows. The readers are referred to Berger et al. [1] and 
Nandakumar and Masliyah [2] for some outstanding 
reviews on curved duct flows. 
 
     One of the interesting phenomena of the flow through 
a curved duct is the bifurcation of the flow because 
generally there exist many steady solutions due to duct 
curvature. Many researches have performed 
experimental and numerical investigations on developing 
and fully developed curved duct flows. An early 
complete bifurcation study of two-dimensional (2D) 
flow through a curved channel was conducted by Winters 
[3]. However, an extensive treatment on the flow 
characteristics for both the isothermal and 
non-isothermal flows through curved duct with 
rectangular cross section was performed by Mondal [4].  
 
     The flow through a rotating curved duct is another  

 

 
subject, which has attracted considerable attention 
because of its importance in engineering devices. The 
fluid flowing in a rotating curved duct is subjected to two 
forces: the Coriolis force due to rotation and the 
centrifugal force due to curvature. For isothermal flows 
of a constant property fluid, the Coriolis force tends to 
produce vortices while centrifugal force is purely 
hydrostatic. When a temperature induced variation of 
fluid density occurs for non-isothermal flows, both 
Coriolis and centrifugal type buoyancy forces can 
contribute to the generation of vortices (Wang and Cheng 
[5]). These two effects of rotation either enhance or 
counteract each other in a non-linear manner depending 
on the direction of wall heat flux and the flow domain. 
Therefore, the effect of system rotation is more subtle 
and complicated and yields new; richer features of flow 
and heat transfer in general, bifurcation and stability in 
particular, for non-isothermal flows. Recently, Mondal, 
Alam and Yanase [6] performed numerical prediction of 
non-isothermal flows through a rotating curved square 
channel with the Taylor number 20000 ≤≤ Tr  for the 
Grashof number 100=Gr . 
 
     In the present paper, a comprehensive numerical 
study is presented for the flows through a rotating curved 
duct with square cross section. Flow characteristics are 
studied over a wide of the Taylor number for the Grashof 
number Gr = 500. Studying the effects of rotation on the 
flow characteristics, caused by the buoyancy forces, is an 
important objective of the present study. 
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2. BASIC EQUATIONS 
 

     Consider a hydro-dynamically and thermally fully 
developed two-dimensional flow of viscous 
incompressible fluid through a rotating curved duct with 
square cross section, whose height and wide are h2  and 

l2 , respectively. In the present case, we consider lh = . 
The coordinate system with the relevant notation is 
shown in Fig. 1, where x′  and y′  axes are taken to be 
in the horizontal and vertical directions respectively, and 
z ′  is the axial direction. The system rotates at a constant 
angular velocity TΩ around the y′ axis. It is assumed 
that the outer wall of the duct is heated while the inner 
wall cooled. The temperature of the outer wall is 

TT Δ+0  and that of the inner wall is TT Δ−0 , where 

TΔ > 0. vu,  and w  be  the velocity components in the 
x′ , y′ and z ′ directions respectively. All the variables 
are non-dimensionalzed.   
 

 
 
Fig 1. Coordinate system of the rotating curved square 
duct 
 
The sectional stream function ψ  is introduced as 

                                                     

      
xx

v
yx

u
∂
∂

+
−=

∂
∂

+
=

ψ
δ

ψ
δ 1

1,
1

1
        (1)   

     Then, the basic equations for the axial velocity w , the 
stream function ψ  and temperature T  are expressed in 
terms of non-dimensional variables as:       
:       
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The non-dimensional parameters Dn , the Dean 
number, Gr , the Grashof number, Tr , the Taylor 
number  and Pr ,  the Prandtl number, which appear  in 
equation (2) to (4) are defined as: 
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where the parameters denote their usual meaning.  
 
The rigid boundary conditions for w  and ψ  are used as 
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and the temperature T  is assumed to be constant on the 
walls as: 
                           

xxTyTyT =±−=−= )1,(,1),1(,1),1(            (8) 
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3. NUMERICAL METHODS 
 

     In order to solve the Equations (2) to (4) numerically, 
the spectral method is used.  By this method the 
expansion functions )(xnφ  and  )(xnψ  are expressed 
as  
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Where ))(coscos()( 1 xnxCn
−=  is the thn  order 

Chebyshev polynomial. ),,(),,,( tyxtyxw ψ  and 
),,( tyxT  are expanded in terms of the expansion 

functions )(xnφ  and )(xnψ  as 
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where M  and N  are the truncation numbers in the x  
and y  directions respectively. 
     First, steady solutions are obtained by the 
Newton-Rapshon iteration method and then linear 
stability of the steady solutions is investigated against 
only two-dimensional ( −z independent perturbations. 
Finally in order to calculate the unsteady solutions, the 
Crank-Nicolson and Adams-Bashforth methods together 
with the function expansion (10) and the collocation 
methods are applied to Eqs. (2) to (4).  
 
4.  FLUX THROUGH THE DUCT 
 

     The dimensional total flux Q′  through the duct in the 
rotating coordinate system is calculated by:  
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is the dimensionless total flux. The mean axial velocity 
w ′  is expressed as 

d
Qvw
4

=′ .  

In the present study, Q  is used to denote the steady 
solution branches and to pursue the time evolution pf the 
unsteady solutions. 
 
 
 

5. RESULTS AND DISCUSSION 
 

     We take a curved duct with square cross section and 
rotate it around the center of curvature with an angular 
velocity TΩ . In the present study, we investigate the 
flow characteristics and discuss the flow phenomena for 
two cases of the Dean numbers, Case 1: 

1000=Dn and Case I1: 2000=Dn , over a wide 
range of the Taylor number 30000 ≤≤ Tr , for the 
Grashof number 500=Gr . Thus an interesting and 
complicated flow behavior will be expected if the duct 
rotation is involved for these two cases. 
 
5.1 Case I: 1000=Dn  
5.1.1 Steady solutions and their linear stability 
analysis 
 

     With the present numerical calculation, we obtain two 
branches of steady solutions for 1000=Dn  over the 
Taylor number 30000 ≤≤Tr . The two steady solution 
branches are named the first steady solution branch (first 
branch, thin solid line) and the second steady solution 
branch (second branch, dashed line), respectively. Figure 
2 shows the flux Q  through the duct versus the Taylor 
number Tr  for the Dean number 1000=Dn . It is 
found that the steady solution branches are independent 
and there exists no bifurcating relationship between the 
two branches in the parameter range investigated in this 
study. It is found that the first branch is composed of 
two-vortex solutions only, while the second branch 
consists of two- and four-vortex solutions.   
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig  2.  Steady solution branches for 30000 ≤≤ Tr  
and Gr = 500. 

 
     Linear stability of the steady solutions shows that 
only the first steady solution branch is partly unstable for 
small Tr  ( 3.15≤Tr ). However, as Tr  increases, the 
steady solution becomes stable and remains stable 
onwards for larger Tr. Thus we find that the steady 
solution is linearly stable for 30004.15 ≤≤ Tr . The 
second steady solution branch is linearly unstable 
everywhere. 
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                                         (a) 
 
 
 
 
 
 
 
          t     45.80    45.90      46.00      46.10                                      
                                       (b) 
Fig 3. Unsteady solutions for 1000=Dn  and 0=Tr . 
(a) Time evolution of Q  and the values of Q  for the 
steady solutions. (b) Contours of secondary flow (top) 
and temperature profile (bottom) for one period of 
oscillation at 10.4680.45 ≤≤ t . 
 
 
5.1.2 Unsteady solutions 
 

       In order to study the non-linear behavior of the 
unsteady solutions, time-evolution calculations are 
performed for 1000=Dn . Time evolution of Q  for 

0=Tr  is shown in Fig. 3(a). It is found that the flow is 
time periodic. In the same figure, the relationship 
between the periodic solution and the steady states, the 
values of Q for the steady solution branches at 0=Tr , 
are also shown by straight lines using the same kind of 
lines as were used in the bifurcation diagram in Fig. 2. 
The periodic solution at 0=Tr oscillates in the region 
between the upper and the lower parts of the second 
steady solution branch. Then, in order to see the change 
of the flow characteristics, as time proceeds, contours of 
typical secondary flow and temperature distribution are 
shown in Fig. 3(b), where it is seen that the periodic 
solution at 0=Tr oscillates between asymmetric two- 
and four-vortex solutions.  
 
5.2 Case II: 2000=Dn  
5.2.1 Steady solutions and their linear stability 
analysis 
 

      We obtain four branches of steady solutions for 
2000=Dn  over a wide range of Tr  

for 30000 ≤≤ Tr . The bifurcation diagram of steady 
solutions is shown in Figure 4. The four steady solution 
branches are named the first steady solution branch (first 
branch, thick solid  line), the second steady solution 
branch (second branch, dashed line), the third  steady 
solution branch (third branch, thin solid line) and the 
fourth steady solution branch (fourth branch, dashed 

dotted line), respectively. 

 
Fig 4. Steady solution branches for 2000=Dn . 

 
The steady solution branches are obtained by the path 
continuation technique with various initial guesses as 
discussed by Mondal [4] and are distinguished by the 
nature and number of secondary flow vortices appearing 
in the cross section of the duct. The first branch is 
composed of only two-vortex solutions. The second 
branch consists of asymmetric two-and nearly symmetric 
four-vortex solutions. The third branch is comprised of 
two- and four- vortex solutions while the forth branch is 
composed of four-vortex solutions. It is found that, at the 
same value of Tr we obtain both two- and four-vortex 
solutions. In the case of temperature transmission from 
inner wall to the fluid, it is found that the convection 
becomes more frequent with the increase of rotation.   
 
      Linear stability of the steady solutions shows that 
only the first branch is linearly stable in a couple of 
interval of Tr, while the other branches are linearly 
unstable at any value of Tr. The first branch is linearly 
stable for 1.2790 <≤ Tr  and 30008.922 ≤< Tr  
and unstable for 80.9221.279 ≤≤Tr . 
 
5.2.2 Unsteady solutions  
 

     We perform time-evolutions of the unsteady solutions 
for 2000=Dn  and 30000 ≤≤ Tr . The time 
evolutions of Q , together with the values of Q  for the 
steady solution branches, are shown in Fig. 5(a) 
for 500=Tr . It is found that the flow oscillates 
multi-periodically. The associated secondary flow 
patterns and temperature profiles are shown in 5(b) 
for 06.1997.18 ≤≤ Tr . As seen in Figs. 5(a) and 5(b), 
the unsteady flow at 500=Tr  oscillates between the 
asymmetric two-vortex solutions. Next, the time 
evolution of Q  is shown in Fig. 6(a) for 900=Tr . It is 
found that the flow oscillates periodically. The associated 
secondary flow patterns and temperature profiles are 
shown, for one period of oscillation, in Fig. 6(b) 
at 89.781.7 ≤≤ Tr . It is found that the unsteady flow 
at 900=Tr  also oscillates between the asymmetric 
two-vortex solutions. 
 
 
 

ψ  

T  
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                                           (a) 
 
 
 
 
 
 
            
          t      18.97      19.00      19.03      19.06 
                                          (b) 
Fig 5. Unsteady solutions for 2000=Dn  
and 500=Tr . (a) Time evolution of Q  and the            
values of Q for the steady solutions. (b) Contours of 
secondary flow (top) and temperature profile (bottom) 
for 2000=Dn  and 500=Tr  at Gr = 500.   
 
 
 
 
 
 
 
 
 
 
                                          (a) 
 
 
 
 
 
 
 
         t        7.81      7.84        7.87        7.90 
                                       (b) 
 
Fig 6. Unsteady solutions for 

2000=Dn and 900=Tr . (a) Time evolution of Q  
and the values of Q  for the steady solutions. (b) 
Contours of secondary flow (top) and temperature profile 
(bottom) for one period of oscillation 
at 90.781.7 ≤≤ t .               
 
6. CONCLUSIONS 
     In this study, a numerical result is presented for the 
fully developed two-dimensional flow of viscous 
incompressible fluid through a rotating curved square 
duct over a wide range of the Taylor number, 

20000 ≤≤ Tr  and the Dean number, 
20000 ≤≤ Dn  for the curvature 1.0=δ . Spectral 

method is used as a basic tool to solve the non-linear 
system of equations.  In this study, a detail discussion 
on 1000=Dn and 2000=Dn are presented with a 
temperature difference between the vertical sidewalls for 
the Grashof number 500=Gr , where the outer wall is 
heated and the inner wall cooled. 
     We obtain two and four branches of asymmetric 
steady solutions for 1000=Dn  and 

2000=Dn respectively. It is found that there exist 
two-and four-vortex solutions on various branches. 
These vortices are generated due to the combined action 
of the centrifugal force and Coriolis force. It is found that 
as Dn  increases the number of steady solutions also 
increases. Linear stability of the steady solutions shows 
that only the first branch is linearly stable while the other 
branches are linearly unstable. In the unstable region, we 
perform time evolution calculations of the unsteady 
solutions and it is found that for 1000=Dn  flow 
becomes periodic before turning to steady state. 
For 2000=Dn , however, the unsteady flow becomes 
steady-state first, then periodic or multi-periodic and 
finally steady state once again, ifTr  is increased.  
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