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1. INTRODUCTION 
     The study of the flow of electrically conducting fluid 
in presence of magnetic field is also important from the 
technical point of view and such types of problems have 
received much attention by many researchers. The 
specific problem selected for study is the flow and heat 
transfer in an electrically conducting fluid adjacent to the 
surface. The interaction of the magnetic field and the 
moving electric charge carried by the flowing fluid 
induces a force, which tends to oppose the fluid motion. 
And near the leading edge the velocity is very small so 
that the magnetic force, which is proportional to the 
magnitude of the longitudinal velocity and acts in the 
opposite direction, is also very small. Consequently the 
influence of the magnetic field on the boundary layer is 
exerted only through induced forces within the boundary 
layer itself , with no additional effects arising from the 
free stream pressure gradient . MHD was originally 
applied to astrophysical and geophysical problems but 
more recently to the problem of fusion power, where the 
application is the creation and containment of hot 
plasmas by electromagnetic forces, since material wall 
be destroyed. Astrophysical problems include solar 
structure especially in the outer layers, the solar wind 
bathing the earth and other planets and interstellar 
magnetic fields.In the presence of MHD natural 
convection boundary layer flow from a porous vertical 
plate of a steady two dimensional viscous incompressible 

fluid has been investigated. In the present work 
following assumptions are made: 
• Variations in fluid properties are limited only to 

those density variations which affect the buoyancy 
terms 

• Viscous dissipation effects are negligible and 
• The radiative heat flux in the x-direction is 

considered negligible in comparison with that in the 
y direction, where the physical coordinates (u, v) are 
velocity components along the (x, y) axes.  

Merkin [1] studied free convection with blowing and 
suction.  Lin and Yu [2] studied free convection on a 
horizontal plate with blowing and suction. Singh [3] 
concluded onMHD free-convection flow in the Stokes 
problem for a porous vertical plate. Chowdhury and 
Islam [4] considered MHD free convection flow of 
visco-elastic fluid past an infinite vertical porous plate. 
Hossain and Takhar [5] studied radiation effect on mixed 
convection along a vertical plate with uniform surface 
temperature. Hayat  et al  [6] pursued the influence of 
thermal radiation on MHD flow of a second grade fluid. 
Alam et al. [7] investigated numerical study of the 
combined free-forced convection and mass transfer flow 
past a vertical porous plate in a porous medium with heat 
generation and thermal diffusion. Hossain [8] computed 
effect of Hall current on unsteady hydromagnetic free 
convection flow near an infinite vertical porous plate. 
Hossain et al. [9] studied the effect of radiation on free 
convection flow from a porous vertical plate. They [9] 
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analyzed a full numerical solution and found an increase 
in Radiation parameter Rd causes to thin the boundary 
layer and an increase in surface temperature parameter 
causes to thicken the boundary layer. The presence of 
suction ensures that its ultimate fate if vertically 
increased is a layer of constant thickness. Duwairi and 
Damseh [10] studied magnetohydrodynamic natural 
convection heat transfer from radiate vertical porous 
surfaces. None of the aforementioned studies considered 
MHD effects on laminar boundary layer flow of the 
fluids along porous plate.  
In the present study, we have investigated MHD natural 
convection flow from a porous vertical plate numerically. 
The results will be obtained for different values of 
relevant physical parameters and will be shown in graphs 
as well as in tables. 
The governing partial differential equations are reduced 
to locally non-similar partial differential forms by 
adopting some appropriate transformations. The 
transformed boundary layer equations are solved 
numerically using implicit finite difference scheme 
together with the Keller box technique [11]. Here, we 
have focused our attention on the evolution of the surface 
shear stress in terms of local skin friction and the rate of 
heat transfer in terms of local Nusselt number, velocity 
profiles as well as temperature profiles for selected 
values of parameters consisting of the magnetic 
parameter M, Prandtl number Pr. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. The coordinate system and the physical model 
 
We have investigated MHD natural convection flow 
from a porous plate . Over the work it is assumed that the 
surface temperature of the porous vertical plate, Tw, is 
constant, where ∞> TTw . The physical configuration 
considered is as shown in Fig.1: 
The conservation equations for the flow characterized 
with steady, laminar and two dimensional boundary 
layer; under the usual Boussinesq approximation, the 
continuity, momentum and energy equations can be 
written as: 
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where ρ is the density, β0 is the strength of magnetic field, 
σ0  is the electrical conduction,  k is the thermal 
conductivity,β is the coefficient of thermal expansion, ν 
is the reference kinematic viscosity ν = μ/ρ , μ  is the 
viscosity of the fluid, Cp is the specific heat due to 
constant pressure. Over the work it is assumed that the 
surface temperature of the porous vertical plate, Tw, is 
constant, where Tw>T∞. Here T∞ is the ambient 
temperature of the fluid, T is the temperature of the fluid 
in the boundary layer, g is the acceleration due to gravity, 
the fluid is assumed to be a grey emitting and absorbing, 
but non scattering medium. 
Now introduce the following non-dimensional variables: 
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Substituting(5) and (6) into Equations (1), (2) and (3) 
leads to the following non-dimensional equations 

2
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Where Pr=νCp/k is the Prandtl number is the heat 
generation parameter and M=β0

2σ0/νρ is the magneto 
hydrodynamic parameter. 
The boundary conditions (4) become 

0, 1 at 0
0, 0 as

f
f

θ η
θ η
′= = = =

′ = = →∞

0, f
                             (9)

The solution of equations (7), (8) enable us to calculate 
the nondimensional velocity components ⎯u,⎯v from the 
following expressions  
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In practical applications, the physical quantities of 
principle interest are the shearing stress τw and the rate of 
heat transfer in terms of the skin-friction coefficients Cfx 
and Nusselt number Nux respectively, which can be 
written as 
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qc is the conduction heat flux. 
Using the Equations (6) and the boundary condition (9) 
into (11) and (12), we get 
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The values of the velocity and temperature distribution 
are calculated respectively from the following relations: 

( )2 ( , ),      ,u f x yξ ξ η θ θ′= =  (14) 
 
2. NUMERICAL PROCEDURE 
     Solutions of the local non similar partial differential 
equation (7) to (8) subjected to the boundary condition 
(9) are obtained by using implicit finite difference 
method with Keller-Box Scheme. which has been 
described in details by Cebeci [12]. 
Discussion on the advancement of algorithm on implicit 
finite difference method is given below taking into 
account the following Equations (15-16). 
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We now consider the net rectangle on the (ξ,η) plane and 
denote the net point by  
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Similarly Equations (18) – (19) are approximate by 
centering about the midpoint 
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The corresponding boundary conditions  become  
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Now the system of linear Equations momentum and 
energy equations together with the boundary conditions 
can be written in matrix or vector form, where the 
coefficient matrix has a block tri-diagonal structure. The 
whole procedure, namely reduction to first order 
followed by central difference approximations, 
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Newton’s quasi-linearization method and the block 
Thomas algorithm, is well known as the Keller- box 
method. 
 
3. RESULT AND DISCUSSION 
    In this exertion MHD natural convection flow on a 
porous vertical plate is investigated. Numerical values of 
local rate of heat transfer are calculated in terms of 
Nusselt number Nux for the surface of the porous vertical 
plate from lower stagnation point to upper stagnation 
point, for different values of the aforementioned 
parameters and these are shown in tabular form in 
Table:1 . The effect for different values MHD parameter 
M on local skin friction coefficient Cfx and the local 
Nusselt number Nux, as well as velocity and temperature 
profiles are displayed in Fig.2 to 5.The aim of these 
figures are to display how the profiles vary in ξ ,the 
selected streetwise co-ordinate. 
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Fig 2. (a) Velocity and (b) temperature profiles for 
different values of prandtl number Pr with others fixed 
parameters 
In figures 2(a)-2(b) it has been shown that when the 
Prandtl number Pr = 0.7, 1.0, 1.5, 2.0 and 3.0 increases 
with θw = 1.1 and M=1.0, both the velocity and 
temperature profiles decrease. 
Figures 3(a) display results for the velocity profiles for 
different values of magnetic parameter M with Prandtl 
number Pr = 1.0 and surface temperature parameter θw = 
1.1. It has been seen from figure 3(a) that as the magnetic 
parameter M increases, but th velocity profiles decrease 
with the increase of magnetic parameter. It is also 
observed from figure 3(a) that the changes of velocity 
profiles in the η direction reveals the typical velocity 
profile for natural convection boundary layer flow, i.e., 
the velocity is zero at the boundary wall then the velocity 

increases to the peak value as η increases and finally the 
velocity approaches to zero (the asymptotic value) . The 
maximum values of velocity are recorded to be 0.14712 , 
0.16024, 0.17466, 0.19259 and 0.21244 for M = 20.0, 
15.0, 10.0, 5.0, and 0.0, at η=0.73363, η=0.78384 and 
η=0.83530.  Here, it is observed that the velocity 
decreases by 27.77% as the magnetic parameter M 
changes from 0 to 20.0. . Figure 3(b) displays results for 
the increasing temperature profiles, for different values 
of magnetic parameter M while Prandtl number Pr = 1.0 
and surface temperature parameter θw = 1.1.  
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Fig 3. (a) Velocity and (b) temperature profiles for 
different values of magnetic parameter M  with others 
fixed parameters 

The variation of the local skin friction coefficient 
Cfx  and local rate of heat transfer Nux for different values 
of Prandtl number Pr while wθ = 1.1, Q = 1.0 and M=1.0 
are shown in Figures 4(a)-4(b). We can observe from 
these figures that as the Prandtl number Pr increases, the 
skin friction coefficient decreases and rate of heat 
transfer increases. 
 Figures 5(a)-5(b) show that skin friction coefficient Cfx 
and heat transfer coefficient Nux decreases for increasing 
values of magnetic parameter M while Prandtl number Pr 
= 1.0, and surface temperature parameter θw = 1.1. The 
values of skin friction coefficient Cfx  and Nusselt number 
Nux are recorded to be 0.27168, 0.30664, 0.36150, 
0.46883 and 0.84175 and 1.00479, 1.00477, 1.00465, 
1.00527 and 1.05097 for M=20.0, 15.0.10.0, 5.0 and.0.0  
respectively which occur at the same point ξ =  1.5. Here, 
it observed that at ξ = 1.5, the skin friction decreases by 
67.72% and Nusselt number Nux decreases by 4.39% as 
the magnetic parameter M changes from 0.0 to 20.0. 
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Fig 4.(a) Skin friction and (b) rate of heat transfer for 
different values of prandtl number Pr with others fixed 
parameters. 
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Fig 5.(a) Skin friction and (b) rate of heat transfer for 
different values of magnetic parameter M with others 
fixed parameters.  
Numerical values of rate of heat transfer Nux and skin 
friction coefficient Cf are calculated from Equations (13) 

from the surface of the vertical porous plate. Numerical 
values of Cfx  and Nux are shown in  Table 1. 
Table 1: Skin friction coefficient and rate of heat transfer 
against x for different values of magnetic parameter M 
with other controlling parameters Pr = 1.1 and  θw =1.1.
ξ M=00.0 M=05.0

Cfx Nux Cfx Nux 
0.01 
0.05 
0.10 
0.50 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 

0.00642 
0.03219 
0.06441 
0.32307 
0.61989 
0.67172 
0.72014 
0.76484 
0.80545 
0.84175 

57.68614 
11.90384 
6.18952   
1.68751 
1.18088 
1.14138 
1.11037 
1.08588 
1.06641 
1.05097 

0.00642 
0.03216 
0.06417 
0.29579 
0.44698 
0.45801 
0.46458 
0.46784 
0.46892 
0.46883 

57.68336 
11.89554 
6.17415 
1.61497 
1.08005 
1.04684 
1.02581 
1.01378 
1.00779 
1.00527 

ξ M=00.0 M=05.0 
Cfx Nux Cfx Nux 

0.01 
0.05 
0.10 
0.50 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 

0.00642 
0.03209 
0.06370 
0.25337 
0.30773 
0.30813 
0.30786 
0.30742 
0.30700 
0.30664 

57.67780 
11.87897 
6.14360 
1.49227 
1.02211 
1.01152 
1.00744 
1.00590 
1.00518 
1.00477 

0.00642 
0.03206 
0.06347 
0.23693 
0.27312 
0.27298 
0.27261 
0.27224 
0.27194 
0.27168 

57.67502 
11.87071 
6.12841 
1.44212 
1.01591 
1.00955 
1.00708 
1.00596 
1.00525 
1.00479 

     In the above table the values of the values of skin 
friction coefficient Cfx  and Nusselt number Nux are 
recorded to be 0.27168, 0.30664, 0.36150, 0.46883 and 
0.84175 and 1.00479, 1.00477, 1.00465, 1.00527 and 
1.05097 for M=20.0, 15.0.10.0, 5.0 and.0.0  respectively 
which occur at the same point ξ =  1.5. Here, it observed 
that at ξ = 1.5, the skin friction increases by 67.72% and 
Nusselt number Nux decreases by 4.39% as the magnetic 
parameter M changes from 0.0 to 20.0.  
 
5  Comparison of the results 

Table 2: Comparison of the present result with [9]

ξ 
θw= 1.1 

Hossain Hossain 
Cfx Nux Cfx Nux 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0655 
0.1316 
0.2647 
0.3963 
0.5235 
0.6429 
0.8874 

6.4627 
3.4928 
2.0229 
1.5439 
1.3247 
1.1995 
1.0574 

0.06535 
0.13138 
0.26408 
0.39519 
0.52166 
0.64024 
0.88192 

6.48306 
3.50282 
2.03018 
1.55522 
1.32959 
1.20347 
1.06109 

ξ 
θw = 2.5 

Hossain Hossain 
Cfx Cfx Cfx Cfx 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.5 

0.0709 
0.1433 
0.2917 
0.4423 
0.5922 
0.7379 
1.0613 

8.0844 
4.2858 
2.4003 
1.7863 
1.4860 
1.1098 
1.1098 

0.07078 
0.14313 
0.29120 
0.44145 
0.59080 
0.73590 
1.05693 

8.10360 
4.29682 
2.40669 
1.78912 
1.48991 
1.31822 
1.11262 
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In order to verify the accuracy of the present work, the 
values of Nusselt number and skin friction for Rd = 0.05, 
Pr = 1.0, M = 0 and various surface temperature wθ = 1.1, 

wθ = 2.5 at different position ofξ are compared with 
Hossain [9] as presented in Table 2. The results are found 
to be in excellent agreement. 
 
6.  CONCLUSION  
For different values of relevant physical parameters 
including the magnetic parameter M on natural 
convection flow from a porous vertical plate has been 
investigated. The governing boundary layer equations of 
motion are transformed into a non-dimensional form and 
the resulting non-linear systems of partial differential 
equations are reduced to local non-similarity boundary 
layer equations, which are solved numerically by using 
implicit finite difference method together with the 
Keller-box scheme. From the present investigation the 
following conclusions may be drawn:  
• For increasing values of Prandtl number Pr leads to 

decrease the velocity profile, the temperature 
profile and the local skin friction coefficient Cfx but 
the local rate of heat transfer Nux increases.  

• An increase in the values of M leads to decrease the 
velocity profiles, the local skin friction coefficient 
Cfx  and the local rate of heat transfer Nux but the 
temperature profiles increases. Electrically 
conducting fluid increases the temperature so the 
rate of heat transfer decreases. An increase of M 
increase the Lorentz force , which opposes the flow 
also increases and leads to enhanced deceleration of 
the flow. So velocity as well as skin friction 
decrease. 
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7. NOMENCLATURE 
Nomenclatures 
Cf   Local skin friction coefficient 
Cp   Specific heat at constant pressure(J.kg-1k-1) 
f   Dimensionless stream function 
g   Acceleration due to gravity(m.s-2) 
k   Thermal conductivity(W.m-1K-1) 
Nux  Local Nusselt number 
Pr   Prandtl number 
qw   Heat flux at the surface(W.m-2) 

cq   Conduction heat flux 
T   Temperature of the fluid in the boundary layer(K) 
T∞  Temperature of the ambient fluid(K) 
Tw   Temperature at the surface(K) 
( , )u v  Dimensionless velocity components along 

     the ( )yx, axes 
V      Wall suction velocity 
(x, y)  Axis in the direction along and normal to the  
    surface respectively 

Greek symbols 
β   Coefficient of thermal expansion(K-1) 
η   Similarity variable 
θ  Dimensionless temperature function 

wθ   Surface temperature parameter 
μ  Viscosity of the fluid(kg.m-1s-1) 
ν   Kinematic viscosity(m2s-1) 
ξ   Similarity variable 
ρ  Density of the fluid(kg.m-3) 
σ  Stephman-Boltzman constant(W,m-2K-4) 
μf  absolute Viscosity at the film temperature 
τ   Coefficient of skin friction 
τw   Shearing stress 
ψ  Non-dimensional stream function 

Subscripts 
w   wall conditions 
∞    Ambient temperature 
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