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1. INTRODUCTION 
     The coupled electrical-mechanical nature of 
electrostatic MEMS gives rise to interesting dynamic 
characteristics  of these devices [1-4] which can have 
significant impact in their applications as capacitive 
switches, resonators, tunable capacitors, and actuators. 
The electrostatic MEMS devices are inherently nonlinear 
due to the nonlinear nature of the electrostatic forces [5]. 
Manifestations of this nonlinearity have resulted in 
various nonlinear phenomena like pull-in instabilities 
[6-10], jump phenomenon and hysteresis [10, 11], 
superharmonic [12, 13] and subharmonic [11, 13] 
resonances, period-doubling bifurcations [10-12], and 
chaos [12]. Moreover, the damping of electrically 
actuated microstructures vibrating in presence of fluid 
trapped in the narrow gap between deformable and fixed 
electrodes is dominated by nonlinear squeeze film 
damping [14] and needs to be taken into account for 
effective simulation of the system dynamics. Several 
approaches to model and numerically simulate these 
nonlinear devices have been reported in open literature. 
In [6, 7], MEMS dynamics were investigated for purely 
DC loads under damped operating conditions. Purely DC 
loads and undamped operating conditions were dealt in 
[8, 9]. Effects of electrostatic actuation by a combination 
of DC and AC loads in presence of linear viscous 
damping were studied in [10, 11, and 13]. 
Full-Lagrangian based relaxation and Newton schemes 
were presented in [12] for dynamic analysis of 
nonlinearly damped electrostatic MEMS devices. Few 
studies in the existing literature deal with a unified yet  
 

 
 

 
simple model to successfully tackle the varying range of 
loading and damping conditions. 
     In this paper, numerically simulated dynamics of 
electrostatic microcantilevers actuated by purely DC 
load or a combination of DC and AC loads, and, operated 
under damped or undamped conditions are investigated 
and comparisons are drawn. A reduced order model 
(ROM) formulated accounting for the nonlinearities of 
the system, arising out of electric forces and the damping 
terms, is successfully employed to predict the nonlinear 
dynamics. Squeeze film damping is found to 
considerably affect the observed nonlinear phenomena. 
 
2. GOVERNING EQUATIONS 
     The model (Fig 1) shows a damped cantilever beam of 
length l , width b , thickness h  separated from the 
ground plane by a small initial air-gap of 0d .  
 

 
 

Fig 1. A schematic diagram of an electrostatically 
actuated microcantilever beam model. 

 
     When subjected to a driving voltage )(tV comprising 
of a DC voltage DCV and an AC component 

)(cos tVAC ω , the beam undergoes oscillatory motions 
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and these oscillations redistribute pressure in the air 
trapped in the non-uniform gap spacing causing a 
damping effect. Let ),( txw denote the transverse 
displacement of the beam being dependent on the 
position x  along the beam length and time t . Following 
the elastic beam theory, and, adding terms representing 
electrostatic excitation and squeeze film effect, the 
governing equation of the one-dimensional Euler-beam 
for small air gap is given by 
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with the boundary conditions as 
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where ρ  is the density of the beam material; 
permittivity constant for free space 

112
0 ,10854.8 −−×= Fmε ; plate modulus for wide 

beams )1( 2ν−′= EE , E ′  is the Young’s modulus, 
ν  is the Poisson’s ratio. The beam is assumed to be 
prismatic with rectangular cross section, thereby the 
moment of inertia and the area of the cross section can be 
given by 123bhI =  and bhA = ,  respectively. The 
first term on the right hand side of Eq. (1a) represents the 
excitation force per unit length while the second term 
represents the force acting on the beam owing to the 
pressure of the squeezed gas film between the beam and 
the ground plane.  
     The one-dimensional force due to squeeze film 
damping is obtained by integrating the two-dimensional 
pressure distribution along the width of the beam, and, is 
given by 
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where ),,( tyxp  is the absolute pressure in the gap and 

ap  is the ambient pressure. For slow viscous motion 
within small gaps and the motion of the beam being 
restricted to normal approach, the pressure ),,( tyxp  is 
governed by the nonlinear Reynolds equation [14] 
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with the trivial boundary conditions, applicable for small 
air-gaps, as 
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where aρ  is the density of ambient air; the non-uniform 
gap spacing ),(),( 0 txwdtxg −= ; μ  is the dynamic 
viscosity of air under standard temperature and pressure. 
     Assuming the flow to be incompressible, and, 
considering an effective air viscosity effμ [14] to take 
into account the slip-flow conditions, Eq. (3a) can be 
reduced to  
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where effective viscosity )61( Kneff += μμ , 
calculated using Burgdorfer’s model; Knudsen number 

gKn aλ= ; aa pp00λλ =  is the mean free path at 
ambient pressure ap . The mean free path 0λ  at 
standard temperature and pressure 

Pap ,10013.1 5
0 ×=  conditions is 

about m,1065 9−× . Using Eq. (2) and the 
nondimensional variables ,, byylxx ==   

,, 00 dggdww ==  appp = , stt = , 

)(2 EIAls ρ= , Eq. (1) and Eq. (4) can be 
expressed as 
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and 
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respectively, where ))(21( 3

0
4

02 EIdblεα = , 

0
4ˆ EIdbplP a= , )(cos)( tsVVtV ACDC ω+= ;  

with the pressure boundary conditions, Eq. (3b), can be 
rewritten as 
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Taking into consideration the boundary conditions, Eq. 
(6b), absolute pressure underneath the vibrating plate can 
be written as 
 

),,(1),,( * tyxPtyxp +=                                          (7) 
 
where tsjeyyxtyxP )(2* ))((),,( ωψ −= is 
used assuming, as in earlier works [6, 7], the spatial 
distribution of pressure to be separable being the product 
of a parabolic function  along the beam width and an 
unknown function )(xψ along the beam length.  
     Substituting Eq. (7) in Eq. (6a) and integrating the 
resulting equation across the width of the beam leads to 
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     For air-gap to length ratio ld0  less than 0.3 [9], the    

2
0 )( ld  terms in the expression for the electrostatic 

force [9] can be safely neglected. As expressed in Eq. 
(1a), the present model neglects the 2

0 )( ld  terms in 
the expression for the electrostatic force and thus 
assumes parallel plate capacitance. For compatibility of 
the fluid model with the electrostatic model, the 2

0 )( ld  
terms in Eq. (8) are neglected to obtain the pressure 
function )(xψ  as 
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Using Eqs. (7) and (9), Eq. (5a) can be rewritten as 
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where 3

0
2 ))(( dbAEIl ρμγ = ; 0daλλ = . The 

second term on the right hand side of Eq. (10) is 
proportional to the beam velocity with the coefficient 
being a nonlinear function of the beam displacement. 
 
3. REDUCED ORDER MODEL (ROM) 
     The method of Galerkin decomposition is employed 
to approximate the system Eq. (10) by a reduced order 
model composed of a finite number of discrete modal 
equations.  The process of Galerkin decomposition starts 

with separating the dependences of the deflection of the 
deformed beam, ),( txw , into temporals and spatials by 
functions )(tai  and )(xiφ respectively, in the form of a 
series of products, i.e., 
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where N  represents the number of modes retained in the 

solution. )(xiφ is the thi  linear undamped mode shape 
of the undeflected microcantilever obtained from the 
following linear undamped eigenvalue problem of a 
straight beam 
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It is worth mentioning that )(xiφ is normalized such 

that 1
1

0

2 =∫ xdiφ . 

     Multiplying Eq. (10) by 2)1)(61( ww −+− λ , 
substituting Eq. (11) and (12a) into the resulting equation, 
multiplying by )(xnφ , and integrating the outcome from 

0=x  to 1 , the set of coupled nonlinear algebraic 
equations can be derived as 
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4. RESULTS 
     The entire analysis is carried out using the ROM 
retaining five )5( =N  modes in Eq. (13). As shown in 
earlier work [9], at least five modes are required to 
correctly simulate the pull-in instabilities using reduced 
order models. The dynamic analysis is carried out by 
numerically solving the set of nonlinear ODEs obtained 
retaining five (N = 5) modes in Eq. (13).Static analysis 
can be done by numerically solving the set of nonlinear 
algebraic equations obtained from Eq. (13) with )(tai  
being let independent of time, ACV  equal to zero, and all 
the time derivatives set equal to zero. The design 
properties used in the present analysis are        

ml μ150= , mb μ22= , mh μ4= , md μ4.10 = , 

PaeE 9160= , 3/2330 mkg=ρ , Paepa 5013.1= , 
2/58.1 mNse −=μ  as used in [15]. 

     The present procedure has been validated by 
comparing the numerical results with the experimental 
results of [15]. For the above mentioned design 
properties of the beam, experiments were carried out in 
[15] to extract the damping ratio under excitation voltage 
( DC ACV V+ ) in the range of 10%  to 20%  of the static 
pull-in voltage [9]. The experimentally obtained first 
resonance frequency was reported to be 240 kHz . To 
facilitate comparison, the present numerical simulation is 
carried out for DCV  equal to 5V  and ACV  equal to 1V  
with the excitation voltage ( DC ACV V+ ) about 14%  of 
the static pull-in voltage ( 41.94V ). As shown in Fig 2, 
the resonance frequency is obtained to be 236 kHz  
which is very close to the experimental observation of 
[15]. 
 

 
 

Fig 2. Frequency response curve. 
 

     Next, the microcantilever is subjected to purely DC 
( DCV ) load and the transient dynamics is investigated 
for both damped and undamped conditions. For the 
undamped case, periodic motion is observed (Figs 3 & 4) 
below a certain critical value of the voltage known as the 
dynamic pull-in voltage ( DPIV ).  
 

 
 

Fig 3. Undamped deflection time history. 
 

Increase in time period (Fig 3) with DCV  indicates 
softening effect of electrostatic nonlinearity. As DCV  is 
increased to DPIV  ( V21.38 ), the motion diverges and 
the beam abruptly collapses onto the electrode.  
 

 
  

Fig 4. Undamped phase plot. 
 
In interpreting the results in Figs 3 & 4, it may be noted 
that the normalized tip displacement equal to unity 
corresponds to collapse of the cantilever into the fixed 
electrode.  
 

 
  

Fig 5. Damped deflection time history. 
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Fig 6. Damped phase plot. 
 
    Under squeeze film damping, the beam performs a 
decaying oscillatory (Figs 5 & 6) motion for DCV  below 
the damped dynamic pull-in voltage ( DDPIV ), and, 
finally settles to a steady deformed state. DDPIV  

( V97.40 ) has been observed to be higher than DPIV  

( V21.38 ) and approaches the static pull-in voltage 
( 41.94V ). The pull-in displacement for the undamped 
case ( 7.06.0 − ) is found to be higher than for the 
damped case ( 6.05.0 − ), thus shrinking the region of 
stability. The separatrix on the phase plane (Figs 4 & 6) 
separates the stable and unstable regions. 
 

 
 

Fig 7. Frequency response curve. 
 

     The nonlinear dynamic behaviour is then studied for 
combined DC and AC loads in the primary and 
superharmonic frequency range. Frequency-response 
curve (Fig 7) obtained for a certain DC bias and varying 
AC amplitudes shows primary as well as possible 
existence of second order superharmonic resonances. 
With increase in ACV , the resonant peaks shift towards 
the left indicating softening behaviour. As shown in Fig 7, 
the dynamic pull-in is observed at DCV  equal to 

V35 and ACV  equal to V1.7 for which the left and 
right branches of the frequency-response curve do not 
close-in and both the branches terminate as normalized 

tip displacement exceeds 65.0 .  
 

 
 

Fig 8. Phase plot at resonance. 
 

     Fig 8 shows the phase plot for primary (PR) as well as 
superharmonic (SHR) resonances just before dynamic 
pull-in. When actuated by a combination of DC and AC 
loads, dynamic pull-in of the cantilever beam occurs at a 
much lower DCV  ( V35 ) (Fig 7) than when actuated by 
a purely DC ( DCV  equal to V97.40 ) (Fig 5) load.   
 
5. CONCLUSION 
     Nonlinear phenomena of resonance shift, 
superharmonic resonance, and dynamic pull-in 
associated with electrostatic MEMS have been presented 
in this paper. The present model is valid for 
incompressible flow in the slip flow regime. The 
nonlinear electrostatic force is found to be responsible 
for the nonlinear dynamic properties observed while the 
nonlinear damping force influences a quantitative shift in 
the design parameters like time period, oscillation 
amplitude, dynamic pull-in voltage and pull-in 
displacement. The present approach enables selection of 
DC bias and the amplitude and frequency of harmonic 
AC loading for realization of both pull-in and non-pull-in 
devices.    
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7. NOMENCLATURE 
 

Symbol Meaning Unit 
l  Beam length mμ
b  Beam width mμ
h  Beam thickness mμ

0d  Air-gap mμ
x Length co-ordinate mμ
y Width co-ordinate mμ
t  Time  sec 

)(tV  Excitation voltage V  

DCV  DC voltage V  

ACV  AC voltage V  
ω Excitation frequency rad/s 
w Beam displacement mμ
ρ Density of beam material Kg/m3

df  Damping force N/m 

0ε  Permittivity constant for free 
space 

F/m 

E Plate modulus N/m2

E ′ Young’s modulus N/m2 
ν Poisson’s ratio -
I Area moment of inertia m4

A Cross sectional area m2

p Absolute pressure aP  

ap  Ambient pressure aP  

aρ  Density of ambient air Kg/m3

g Non-uniform gap spacing mμ
μ Coefficient of viscosity Ns/m2

effμ  Effective coefficient of 
viscosity 

Ns/m2

Kn  Knudsen number - 

aλ  Mean free path at ambient 
pressure 

m 

2α  Strength of electric actuation - 

P̂ Non-dimensional pressure - 
*P Pressure variation - 

ψ Pressure function - 
γ Damping factor - 
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