
Proceedings of the 
International Conference on Mechanical Engineering 2009 

(ICME2009) 26- 28 December 2009, Dhaka, Bangladesh 
 

ICME09-TH-09 

© ICME2009 1    TH-09 

 
 
 
 

1. INTRODUCTION 
Wavy surfaces are encountered in several heat 

transfer devices such as flat plate solar collectors and 
flat plate condensers in refrigerators.  Larger scale 
surface non-uniformities are encountered, for example, 
in cavity wall insulating systems and grain storage 
containers, room heater etc. If the surface is wavy, the 
flow is disturbed by the surface and this alters the rate 
of heat transfer. 

The only papers to date that study the effects of such 
non-uniformities on the vertical convective boundary 
layer flow of a Newtonian fluid are those of Yao [1], 
Moulic and Yao [2, 3]. Natural convection over a 
vertical wavy cone and frustum of a cone has been 
studied by Pop and Na [4, 5]. Cheng [6] have 
investigated natural convection heat and mass transfer 
near a vertical wavy cone with constant wall 
temperature and concentration in a porous medium. 
Hossain et al. [7, 8, 9] have studied the problem of 
natural convection flow along a vertical wavy cone and 
wavy surface with uniform surface temperature in 
presence of temperature dependent viscosity and 
thermal conductivity. Wang and Chen [10], have 
studied mixed convection boundary layer flow on 
inclined wavy plates including the magnetic field effect. 
Yao [11] has studied natural convection along a vertical 
complex wavy surface. Molla et al. [12] have studied 
natural convection flow along a vertical complex wavy 
surface with uniform heat flux. 

In all of the above mentioned studies except Hossain 
et al. [7, 8, 9], the authors considered that the viscosity 

of the fluids are constant in the flow regime. But the 
physical properties may change significantly with 
temperature. For instance, the viscosity of water 
decreases about 240% when the temperature increases 
from 10oC to 50oC. Ling and Dybbs [13] have 
considered the viscosity to vary inversely to a linear 
function of temperature. On the other hand, Chrraudeau 
[14] has proposed a formula assuming the viscosity of 
the fluid to be proportional to a linear function of 
temperature. Hossain et al. [8, 15] investigated the 
natural convection flow past a permeable wedge and 
wavy cone for fluid having temperature dependent 
viscosity. In many application of practical importance, 
the surface temperature is non-uniform.  

The case of uniform surface heat flux, which is often 
approximated in practical applications, has great 
importance in engineering applications. Very few of the 
aforementioned authors have studied natural convection 
flow for a surface which exhibits the uniform surface 
heat flux. 

 In the present study, the natural convection 
boundary layer flow along a vertical wavy cone with 
uniform heat flux has been considered. In addition the 
viscosity of the fluid is taken to be inversely 
proportional to the temperature. The formula proposed 
by Ling and Dybbs [13] is used to define the 
relationship between viscosity and temperature. The 
current problem is solved numerically by using 
Straightforward Finite Difference method (SFFD), 
reported by Yao [1, 2, 11]. Solutions are obtained for 
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the fluid having Prandtl number Pr = 7.0 (water) and 
with the different values viscosity variation parameter. 
 
2. FORMULATION OF THE PROBLEM 

The boundary layer analysis outlined below allows 
the shape of the wavy surface, )ˆ(ˆ xσ to be arbitrary, but 
our detailed numerical work will assume that the surface 
exhibits sinusoidal deformations.  Thus the wavy 
surface of the cone is described by 

( )Lxaxyw ˆsinˆ)ˆ(ˆ πσ ==        (1) 
where 2L is the fundamental wavelength associated with  
wavy surface and â  is the amplitude of the waviness. 

The physical model of the problem and the two-
dimensional coordinate system are shown in Figure 1, 
where φ is the half angle of the flat surface of the cone 
and  ( )xr ˆˆ  is the local radius of the flat surface of the 
cone which is defined by 

ϕsinˆˆ xr =           (2) 
Under the Boussinesq approximation, we consider 

the flow to be governed by the following equations: 
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where ( )yx ˆ,ˆ  are the dimensional coordinates and 
( )v̂,û are the velocity components parallel to ( )yx ˆ,ˆ . 
Also Cp is the specific heat at constant pressure and µ is 
the temperature dependent viscosity of the fluid which 
is defined as a linear function of the temperature. 
 ( )[ ]∞∞ −+= TTγµµ 11         (7) 

where µ∞ is the viscosity of ambient fluid outside the 
boundary layer and γ is a constant. 
The boundary condition for the present problem is  

)ˆˆ(,0ˆ,0ˆ . Tnkqw ∇−=== vu  at )ˆ(ˆˆ xyy w σ==     (8a) 

∞== TT,0û   as ∞→ŷ             (8b) 
where qw is the uniform heat flux and n̂  is the unit 
vector normal to the wavy surface. Now the following 
non-dimensional variables are introduced to obtain a set 
of non-dimensional governing equation: 
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where θ is the dimensionless temperature function and 
ν∞ = µ∞/ρ is the kinematic viscosity. Here the new 
coordinate system (x, y) are not orthogonal, but a 
regular rectangular computational grid can be easily 
fitted in the transformed coordinate. On introducing the 
above dimensionless dependent and independent 
variables into the equations (3)-(6) the following 
dimensionless form of the governing equations are 
obtained at leading order in the Grashof number, Gr:  
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Figure 1: Physical model and the coordinate system 
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where 
k
C p∞=

µ
Pr , [ ])1(1 θεµµ += ∞   and  
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k
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 Here ε is a parameter which controls the value of γ 
and hence the temperature dependent viscosity µ as it is 
defined by equation (7) and (14). 

It can easily be seen that the convection induced by 
the wavy surface is described by equations (10)-(13).  
Equation (12) represents that the pressure gradient along 
the x direction is in the order of Gr -1/5. In the present 
problem this pressure gradient is zero because, no 
externally induced free stream exists. The elimination of 
∂p/∂y from equations (11) and (12) leads to  
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 The corresponding boundary conditions for the 
present problem then turn into   

211,0,0 xy σθ +−=∂∂== vu  at 0=y  
0,0 == θu   as ∞→y              (16) 

 
3. NUMERICAL METHODS 

Investigating the present problem we have employed 
the straightforward finite difference method, which is 
described below. Firstly we introduce the following 
transformations to reduce the governing equation to a 
convenient form: 

( ){ } ( ) ( ){ },5,,,5, 5351 xuYXUrRxyYxX ====  

( ) ( ) ( ) ( ){ }5151 5,,5, xYXxYXV θ=Θ= v        (17) 

Introducing the transformations given in equation (17) 
into the equations (10), (15) and (13) we have, 
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The boundary conditions now take the following form: 
211,0,0 xY

VU σ+−=
∂
Θ∂

==  at 0=Y  

0,0 =Θ=U   as ∞→Y           (21) 
Solutions of the non-dimensional partial differential 
system given by (18)-(20) and subject to the boundary 
conditions (21) are obtained by using the 
straightforward finite difference method developed by 
L.S. Yao [1, 2, 11]. However, once we know the values 
of the function U, V and Θ and their derivatives, it is 
important to calculate the values of the average Nusselt 
number, Num from the following relation which is 
obtained by using the set of transformations: 
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Also the skin friction coefficients is defined as  
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The stream function for the wavy cone is defined as 
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 Figure 2: Comparison of present results on a) Surface temperature and b) Surface shear stress with 
Lin and Pullepu et. al. results 
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For calculating the stream function ψ, we have 
integrated the fluid velocity over the whole boundary 
layer, which may be defined as  

( )∫=
Y

dYUXR
0

535ψ , where ϕsinXR =       (25) 

 
4. RESULTS AND DISCUSSION 

In this paper, the effect of temperature dependent 
viscosity on a steady two-dimensional natural 
convection laminar flow of viscous incompressible fluid 
along a vertical wavy cone has been investigated by 
using very efficient finite difference method. It is seen 
that the solutions are affected by the viscosity variation 
parameter as well as the amplitude of the cone. Here we 
have focused our attention on the effect of ε on the 
average Nusselt number Num(5/Gr)1/5, skin friction Cfx 
as well as velocity and temperature distribution. We 
also show the graphical representation of velocity 
vectors, stream lines and isotherms of the flow field.  

In order to validate the present numerical results, the 
skin friction coefficient and the surface temperature 
have been compared with those of Lin [16] and Pullepu 
et. al. [17]. The present comparison is done for the flat 

vertical cone with uniform surface heat flux case. Lin 
[16] has studied the free convection from a vertical cone 
with uniform surface heat flux case. On the other hand, 
Pullepu et al. [17] have studied unsteady laminar free 
convection from a vertical cone with uniform heat flux 
case. The comparative studies are illustrated graphically 
in fig. 2 which shows that the present results have 
excellent agreement with those results when the effect 
of viscosity variation parameter was passed over. 

The numerical results are presented for the different 
values of viscosity variation parameter ε for a suitable 
fluid having Prandtl number Pr = 7.0 (water). To 
examine the effect of ε we also considered that a = 0.3 
and φ=30o remain constant. Figure 3 (a), (b) represents 
the non-dimensional tangential and normal velocity 
distribution for different values of ε at a fixed point X = 
1.0. It is found that the increasing value of ε increase the 
tangential velocity inside the boundary layer slightly. 
The thickness of the boundary layer remains same as ε 
increases. Figure 3(b) shows that the normal velocity 
decreases slightly when ε increases.     

Fluid temperature distribution at a fixed point X = 
1.0 and surface temperature distribution for different 
values of ε are shown in fig 4(a) and 4(b) respectively. 
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 Figure 4: (a) Fluid temperature distribution at X =1.0 and (b) Surface Temperature distribution for 

Pr = 7.0, a = 0.3 and φ = 30o. 
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From the figure it is evident that the temperature 
distribution inside the boundary layer at any fixed point 
decreases slightly when ε increases. The surface 
temperature decreases significantly due to the increasing 
value of ε and the surface temperature is found to 
fluctuate along the wavy surface. 

The effect of ε on the surface shear stress in terms of 
skin friction coefficient and on the average rate of heat 
transfer in terms of average Nusselt number are given in 
the fig 5(a) and 5(b) respectively. The skin friction 
decreases faintly with the increase of viscosity variation 
parameter. While the average rate of heat transfer 
increases significantly for higher value of ε.   

Figure 6(a)-(c) show the isotherm for a wavy cone, 
while the viscosity variation parameter ε is taken as 0.0, 
0.5 and 1.0 respectively. The figures indicate that the 
increases of ε affect the isotherm and leads to the 
thinner thermal boundary layer.  
 
4. CONCLUSIONS 

The effect of viscosity variation parameter ε, on the 
natural convection boundary layer flow along a vertical 
wavy surface with uniform heat flux, has been studied 
numerically. New variables transform the complex 

geometry into a simple shape where a very efficient 
straightforward finite difference (SFFD) method was 
used to solve the non-dimensional boundary layer 
equations. From the present investigation the result can 
be summarized as follows: 

• The skin friction decreases within the 
computational domain for increasing value of the 
viscosity variation parameter ε.  
• The average rate of heat transfer enhance 
significantly with the increases of ε. 
• Tangential velocity increase slightly with the 
increasing value of viscosity variation parameter ε.  
• It was found that the temperature inside the 
boundary layer at any fixed point decreases slightly 
when ε increases.  
• One important finding is that, the increases of ε 
affect the isotherm and leads to the thinner thermal 
boundary layer. 
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6. NOMENCLATURE 
 
Symbol Meaning Units 
a Amplitude wavelength ratio (- -) 
â  Amplitude of the wavy cone (m) 

Cp Specific heat at constant 
pressure 

(m2·s−2·K−1) 

Cf Skin friction coefficient (- -)
g Acceleration due to gravity  (m.s-2) 
Gr Grashof number  (- -) 
k Thermal conductivity  (m.kg.s-3K-1) 

L  Half of the fundamental 
wavelength  

(m) 

n̂  Unit vector normal to the 
wavy surface 

(- -) 

Num Average Nusselt number  (- -) 

p Dimensionless pressure 
function 

(- -) 

Pr Prandtl number  (- -) 

q w Uniform heat flux at the 
surface  

(kg·s−3 ) 

( )xr ˆˆ  Local radius of the of the 
cone 

(m) 

r, R Dimensionless radius of the 
cone 

(- -) 

T Temperature in the boundary 
layer  

(K) 

( )v̂,û   Velocity component along x̂  
and  ŷ  

(m.s-1) 

Greek symbols 

β Volumetric coefficient of 
thermal expansion 

(K-1) 

ε Viscosity variation parameter (- -) 

θ , Θ Dimensionless temperature 
function 

(- -) 

µ  Viscosity of the fluid  (m-1kg.s-1) 

µ∞ 
Dynamic viscosity of the 
ambient fluid 

(m-1kg.s-1) 

ν∞ Reference kinematic 
viscosity  

(m2.s−1) 

ρ Density of the fluid  (m-3kg) 

σ (x)  Non-dimensional surface 
profile function  

(- -) 

σ̂  Surface profile function (m) 
τw Shearing stress (m-1.kg.s-2) 
φ The half angle of the cone (  0 ) 
ψ Stream function (- -) 
Subscript
w Wall conditions  
∞ Ambient temperature  
m Average condition 
x Differentiation with respect 

to x 
 

 


