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1. INTRODUCTION 
     Natural convection flow from a horizontal cylinder 
due to thermal buoyancy was analyzed by a number of 
researchers [1-4] under diverse surface boundary 
conditions (isothermal, uniform heat flux and mixed 
boundary conditions) using different mathematical 
technique. The conjugate heat transfer process (CHT) 
formed by the interaction between the conduction inside 
the solid and the convection flow along the solid surface 
has a significant importance in many practical 
application. In fact, conduction within the tube wall is 
significantly influenced by the convection in the 
surrounding fluid. Consequently, the conduction in the 
solid body and the convection in the fluid should have to 
determine simultaneously. Gdalevich and Fertman[5]  
studied the conjugate problems of natural convection. 
Miyamoto et al. [6] analysed the effects of axial heat 
conduction in a vertical flat plate on free convection heat 
transfer. Miyamoto observed that a mixed-problem study 
of the natural convection has to be performed for an 
accurate analysis of the thermo-fluid-dynamic (TFD) 
field if the convective heat transfer depends strongly on 
the thermal boundary conditions. Pozzi et al. [7] 
investigated the entire TFD field resulting from the 
coupling of natural convection along and conduction 
inside a heated flat plate by means of two expansions, 
regular series and asymptotic expansions. Moreover, 
Kimura and Pop [8] analysed conjugate natural 
convection from a horizontal circular cylinder.  

MHD flow and heat transfer process are now an 

important research area due to its potential application in 
engineering and industrial fields. A considerable amount 
of research has been done in this field. Wilks et al. [9] 
studied MHD free convection about a semi-infinite 
vertical plate in a strong cross field. Takhar and 
Soundalgekar [10] investigated dissipation effects on 
MHD free convection flow past a semi-infinite vertical 
plate. Hossain [11] studied viscous and Joule heating 
effects on MHD free convection flow with variable plate 
temperature. Aldoss et al. [12] analysed MHD mixed 
convection from a horizontal circular cylinder. El-Amin 
[13] found out the combined effect of viscous dissipation 
and Joule heating on MHD forced convection over a 
non-isothermal horizontal circular cylinder embedded in 
a fluid saturated porous medium. He observed that both 
the velocity profiles and temperature profiles shifted 
down for increasing value of magnetic parameter and 
that are rise up for increasing value of Joule heating 
parameter.  

In this paper, the MHD-conjugate free convection 
flow from an isothermal horizontal circular cylinder with 
Joule heating effect is investigated. The governing 
boundary layer equations are transformed into a non 
dimensional form and the resulting non linear partial 
differential equations are solved numerically using the 
implicit finite difference method together with the Keller 
box technique [15,16]. The temperature distributions, 
velocity profiles, skin friction coefficients and the heat 
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transfer rates are presented graphically. 

2. MATHEMATICAL ANALYSIS 
     Let us consider a steady natural convection flow of a 
viscous incompressible and electrically conducting fluid 
from an isothermal horizontal circular cylinder of radius 
a placed in a fluid of uniform temperature ∞T . The 

cylinder has a heated core region of temperature bT  and 
the normal distance from inner surface to the outer 
surface is b with ∞> TTb . A uniform magnetic field 

having strength 0B is acting normal to the cylinder 
surface. The x-axis is taken along the circumference of 

 
Fig. 1: Physical Model and coordinate system 

 
the cylinder measured from the lower stagnation point 
and the y-axis is taken normal to the surface.  It is 
assumed the fluid properties to be constant and the 
induced magnetic field is ignored. The effects of Joule 
heating in the flow region and conduction from inner 
surface to the outer surface considered in the present 
study. Under the balance laws of mass, momentum and 
energy and with the help of Boussinesq approximation 
for the body force term in the momentum equation, the 
equations governing this boundary-layer natural 
convection flow can be written as: 
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The physical situation of the system suggests the 
following boundary conditions 
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The governing equations and the boundary conditions 
(1)-(4) can be made non-dimensional, using the Grashof 

number 
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Where θ is the dimensionless temperature. The non 
dimensional form of the equations (1)-(3) are as follows: 
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Where )/()( 2/12
0

2 GrBaM ρνσ= is the magnetic 

parameter, ( )}/{)( 2/12
0 ∞−= TTcGrBJ bpρσν  is the 

joule heating parameter and κμ /pcPr =  is the Prandtl 
number.  
The boundary condition (4) can be written as in the 
following dimensionless form: 
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=  is the conjugate conduction 

parameter. The present problem is governed by the 
magnitude of p. The values of p depends on ab / ,  

sf κκ / and Gr . The ratios ab / and sf κκ / are less 

than one where as Gr  is large for free convection. 
Therefore the value of p may be zero (b=0) or greater 
than zero. In the present investigation we have 
considered  p =1.   

To solve equation (6)-(8), subject to the boundary 
condition (9), we assume following transformations 

             ( )yxfx ,=ψ , ),( yxθθ =                        (10) 
Where ψ  is the stream function usually defined as 
                 yu ∂∂= /ψ xv ∂−∂= /ψ                       (11) 
Substituting (11) into the equations (6)-(9), the new 
forms of the dimensionless equations (7) and (8) are 
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In the above equations primes denote differentiation with 
respect to y. The corresponding boundary conditions take 
the following form  
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Principle physical quantities, the shearing stress and 
the rate of heat transfer in terms of skin friction 
coefficient fC and Nusselt number Nu respectively can 
be written as 

)0,(4/1 xfxGrC f ′′=                                      (15) 

)0,(4/1 xGrNu θ−=−                                       (16) 
The results of the velocity profiles and temperature 

distributions can be calculated by the following relations 
respectively. 
      ),( yxfu ′= , ),( yxθθ =                              (17) 

 
3. METHOD OF SOLUTION 
     Equation (12) and (13) are solved numerically based 
on the boundary conditions as described in equation (14) 
using one of the most efficient and accurate methods 
known as implicit finite difference method with Keller 
box scheme [19, 20]. 
 
4. RESULTS AND DISCUSSION 
     The main objective of the present work is to analyze 
the flow of the fluid and the heat transfer processes due to  
the conjugate heat transfer from an isothermal horizontal 
circular cylinder. The Prandtl numbers are considered to 
be 1.63, 1.44, 1.0 and 0.733 for the simulation that 
correspond to Glycerin, water, steam and hydrogen, 
respectively. The value of the conjugate conduction 
parameter p is considered 1.0 for entire solutions. 

A comparison of the local Nusselt number and the 
local skin friction factor obtained in the present work 
with M = 0.0, J = 0.0, p = 0.0 and Pr = 1.0 and obtained 
by Merkin [1] and Nazar et al. [14] have been shown in 
Tables 1 and 2 respectively. There is an excellent 
agreement among these three results. 

The magnetic field opposes the fluid flow. As a result 
the peak velocity decreases with the increasing M as 
shown in fig. 2. Consequently, the separation of the 
boundary layer occurs earlier and the momentum 
boundary layer becomes thicker. From Fig. 3 it can be 
observed that the magnetic field decreases the 
temperature gradient and increases the temperature in the 
boundary layer for a particular value of y. Thus, the 
magnetic parameter increases the thickness of the 
thermal boundary layer. Temperature at the interface also 
varies with different M since the conduction is 
considered within cylinder.  

The variation of the local skin friction coefficient and 
local rate of heat transfer with Pr =1.0 and J =0.10 for 
different values of M at different positions are illustrated 
in Fig. 4 and Fig. 5. The Magnetic force opposes the 
flow, as mentioned earlier, and reduces the shear stress at 
the wall as illustrated in Fig. 4. Moreover, the heat 
transfer rate also decreases as revealed in Fig. 5. 

The velocity profiles, temperature distributions, local 
skin friction coefficients and the heat transfer rate for 
different values of Joule heating parameter J are 
presented in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, respectively 

with Pr =1.0 and M =0.5. Increasing value of the Joule 
heating parameter containing magnetic field strength B0 
increases the temperature and finally the fluid motion is 
accelerated as plotted in Fig.7 and Fig.6 respectively. The 
variation of the skin friction coefficient increases for the 
increasing J as depicted in Fig. 8 which is expected. The 
increased temperature for increasing J within the 
boundary layer reduced the temperature difference 
between the boundary layer region and the core region 
eventually decreases heat transfer rate as illustrated in 
Fig.9. 

In Fig. 10 and Fig. 11 different values of Prandtl 
number Pr, with M = 0.5 and J = 0.10, are considered for 
the velocity and temperature distributions respectively. It 
is observed in Fig. 10 that the peak velocity decreases as 
well as its position moves toward the surface of the 
cylinder for the increasing values of Prandtl number. The 
overall temperature profiles shift downward with 
increasing Prandtl number as shown in Fig. 11. 
Consequently, temperature difference increases between 
the boundary layer region and the core region which 
increases the rate of heat transfer as observed in Fig. 13. 
This result supports the physical fact that the thermal 
boundary layer thickness decreases with increasing Pr. 
The skin friction coefficient decreases for the increasing 
values of Prandtl number as plotted in Fig.12. 
 
5. TABLES AND FIGURES 
Table 1: Numerical values of )0,(xθ′− for different 
values of x while Pr=1.0, M = 0.0, J=0.0 and p = 0.0. 
 

4/1−GrNu = )0,(xθ′−  
x Merkin [1] Nazar et 

al. [14] 
Present 

0.0 0.4214 0.4214 0.4216 
π/6 0.4161 0.4161 0.4163 
π/3 0.4007 0.4005 0.4006 
π/2 0.3745 0.3741 0.3741 

2π/3 0.3364 0.3355 0.3355 
5π/6 0.2825 0.2811 0.2811 
π 0.1945 0.1916 0.1912 

 
Table 2: Numerical values of )0,(xfx ′′ for different 
values of x while Pr = 1.0, M = 0.0, J=0.0 and p = 0.0. 
 

=4/1GrC f )0,(xfx ′′  

x Merkin [1] Nazar et 
al. [14] 

Present 

0.0 0.0000 0.0000 0.0000 
π/6 0.4151 0.4148 0.4139 
π/3 0.7558 0.7542 0.7528 
π/2 0.9579 0.9545 0.9526 

2π/3 0.9756 0.9698 0.9678 
5π/6 0.7822 0.7740 0.7718 
π 0.3391 0.3265 0.3239 
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Fig  2. Variation of velocity profiles against y for varying 
of M with Pr = 1.0, J = 0.10 and p =1.0. 
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Fig  3. Variation of temperature distributions against y for 
varying of M with Pr = 1.0, J = 0.10 and p =1.0. 
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Fig 4. Variation of skin friction coefficients against x for 
varying of M with Pr = 1.0, J = 0.10 and p=1.0. 
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Fig 5. Variation of rate of heat transfer against x for 
varying of M with Pr = 1.0, J = 0.10 and p =1.0. 
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Fig  6. Variation of velocity profiles against y for varying 
of J with Pr = 1.0, M = 0.5 and p = 1.0. 
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Fig  7. Variation of temperature distributions against y for 
varying of J with Pr = 1.0, M = 0.5 and p = 1.0.  
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Fig  8. Variation of skin friction coefficients against x for 
varying of J with Pr = 1.0, M = 0.5 and p =1.0.  
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Fig  9. Variation of rate of heat transfer against x for 
varying of J with Pr = 1.0, M = 0.5 and p =1.0.     
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Fig  10. Variation of velocity profiles against y for 
varying of Pr with J = 0.10, M = 0.5 and p = 1.0. 
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Fig  11. Variation of temperature distributions against y 
for varying of Pr with J = 0.10, M = 0.5 and p = 1.0. 
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Fig  12. Variation of skin friction coefficients against x 
for varying of Pr with J = 0.10, M = 0.5 and p = 1.0. 
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Fig  13. Variation of rate of heat transfer against x for 
varying of Pr with J = 0.10, M = 0.5 and p = 1.0. 
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6.  CONCLUSION 
A steady, two dimensional, MHD-conjugate free 

convection flow is studied considering joule heating 
phenomenon. The effects of the magnetic parameter M, 
Joule heating parameter J and Prandtl number Pr are 
analysed on the fluid flow with conjugate conduction 
parameter p = 1.0. The velocity of the fluid within the 
boundary layer and the skin friction coefficients along 
the cylinder surface decreases with increasing M and Pr 
while it increases with increasing J. The temperature 
distribution increases for increasing M and J whereas it 
decreases for increasing Pr. On the other hand the skin 
friction coefficients decreases for increasing M and J and 
it increases for increasing Pr. 
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8. NOMENCLATURE 

Symbol Meaning Unit
b Thickness of the cylinder (cm)
B0 Applied magnetic field (N) 

fxC Skin friction coefficient … 
pc Specific heat (J/Kg.K) 
f  Dimensionless stream 

function  
… 

g Acceleration due to gravity  (cm/s2) 
J Joule heating parameter … 
l Length of the plate (cm)

M Magnetic parameter … 
Nux Local Nusselt number … 
p Conjugate conduction 

parameter 
… 

Pr Prandtl number … 
bT  Temperature of the inner 

cylinder 
(K) 

fT Temperature at the 
boundary layer region 

(K) 
 

sT Temperature of the solid of 
the cylinder 

(K) 

∞T Temperature of the ambient 
fluid 

(K) 

vu, Velocity components  (cm/s) 
vu ,  Dimensionless velocity 

components 
… 

yx , Cartesian coordinates  (cm) 
yx ,  Dimensionless Cartesian 

coordinates 
… 

Greek symbols
Symbol Meaning Unit 

β Co-efficient of thermal 
expansion

(K-1) 

ψ Dimensionless stream 
function  

… 

ρ Density of the fluid inside 
the  boundary layer    

(Kg/m3) 

ν Kinematic viscosity  (m2/s) 
μ Viscosity of the fluid  (N.s/m2) 
θ Dimensionless temperature  … 
σ Electrical conductivity  J/msK 
Kf Thermal conductivity of 

the ambient fluid       
(kW/mK) 

Ks Thermal conductivity of 
the ambient solid         

(kW/mK) 
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