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1. INTRODUCTION 
     The science of magnetohydrodynamics was 
concerned with geophysical and astrophysical problems 
for a number of years. In recent years the possible use of 
MHD is to affect a flow stream of an electrically 
conducting fluid for the purpose of thermal protection, 
braking, propulsion and control. From the point of 
applications, the effect of magnetic field on free 
convective flows was analyzed by Raptis and Singh[1]. 
Singh et al.[2] studied MHD heat and mass transfer flow 
of a viscous incompressible fluid past an infinite vertical 
porous plate under oscillatory suction velocity normal to 
the plate. The steady laminar flow and heat transfer 
characteristics of a continuously moving vertical 
sheet of extruded material was investigated by Sami 
and Al-Sanea[3]. The unsteady MHD heat and mass 
transfer problem with variable suction velocity 
have studied by Chamkha[4].  
     The effect of thermal diffusion on MHD free 
convection and mass transfer flows have many 
application in separation processes as isotope 
separation and mixtures between gases with very light 
molecular weight ( )2 , eH H and medium molecular 
weight ( 2N , air) (Eckert and Drake[5]). Transient 
MHD heat and mass transfer flow with thermal 
diffusion in a rotating system has analyzed by Alam and 
Sattar[6]. Recently, Alam et al.[7] have numerically 
investigated the mass transfer flow past a vertical 
porous medium with heat generation and thermal 
diffusion on the combined free-forced convection 
under the influence of transversely applied magnetic 
field. The problem becomes more complicated if the 

strong magnetic field has been considered. These 
types of problems have special importance in 
astrophysical and geophysical engineering.  
     Hence our main aim is to investigate steady-state 
solutions of unsteady MHD heat and mass transfer 
flow of an electrically conducting viscous fluid past a 
moving semi-infinite vertical porous plate under the 
action of strong magnetic field taking into account the 
induced magnetic field with thermal diffusion. 
 
2. MATHEMATICAL MODEL OF FLOW 
     Consider MHD combined heat and mass transfer 
unsteady flow of an electrically conducting 
incompressible viscous fluid past an electrically 
non-conducting continuously moving semi-infinite 
vertical porous plate with thermal diffusion. The flow is 
assumed to be in the x-direction, which is chosen along 
the plate in upward direction and y-axis is normal to it. 
A strong uniform magnetic field is applied normal to the 
flow region. Initially it is assumed that fluid and the 
plate are at rest after that the plate is moved with a 
constant velocity 0U  in its own plane. Instantaneously at 
time 0t > , temperature of the plate and species 
concentration are raised to ( )wT T∞>  and ( )wC C∞>  
respectively, which are thereafter maintained constant, 
where wT , wC  are temperature and species concentration 
at the wall and T∞ , C∞  are temperature and species 
concentration far away from the plate respectively. The 
physical model of this study is presented in Fig 1.  
     In addition, the viscous dissipation and joule 
heating terms in the energy equation have been 
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Fig 1. Physical model and coordinate system
considered for high speed flows, the level of 
concentration of foreign mass has been taken very 
high for observing the effect of Soret number on flow 
and the magnetic Reynolds number of flow is taken to 
be large enough so that the induced magnetic field is not 
negligible. The divergence equation . 0=H∇  of 
Maxwell’s equation for the magnetic field gives yH =  

constant 0H= . 
     Within the framework of the above stated 
assumptions and using the dimensionless quantities,  
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the equations relevant to the unsteady two dimensional 
problem is governed by the following  non-dimensional 
system of coupled non-linear partial differential 
equations under the boundary-layer approximations as; 
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also the associated initial and boundary conditions are 
0, 0, 0, 0, 0, 0xU V H T Cτ ≤ = = = = =  everywhere (6)        
0, 0, 0, 0, 0, 0xU V H T Cτ > = = = = =  at 0X =  

( )1, 0, 1 say , 1, 1xU V H h T C= = = = = =    at 0Y =    (7) 
0, 0, 0, 0, 0xU V H T C= = = = =  as Y →∞      

3. SHEAR STRESS, CURRENT DENSITY, 
    NUSSELT AND SHERWOOD NUMBER 
     From the velocity field, the effects of various 
parameters on the shear stress have been calculated. The 

local and average shear stress, 
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magnetic field, the effects of various parameters on 
current density have been observed. The local and 

average current density, 
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the temperature field, the effects of various parameters 
on the Nusselt number have been investigated. The local 

and average Nusselt number,
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concentration field, the effects of various parameters on 
Sherwood number have been analyzed. The local and 

average Sherwood number, 
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4. NUMERICAL SOLUTIONS 
     In order to solve the non-dimensional system by the 
explicit finite difference method, it is required a set of 
finite difference equations. For this, a rectangular region 
of the flow field is chosen and the region is divided into a 
grid of lines parallel to X and Y axes, where X-axis is 
taken along the plate and Y-axis is normal to the plate. 
Here we consider that the plate of height ( )max 100X =  

i.e. X varies from 0 to 100 and assumed ( )max 25Y =  as 
corresponding to Y →∞  i.e. Y varies from 0 to 25. 
There are ( )125m =  and ( )125n =  grid spacing in the X 
and Y directions respectively as shown in Fig 2. It is 
assumed that XΔ , YΔ  are constant mesh sizes along X 
and Y directions respectively and taken as follows, 

( )0.8 0 100X XΔ = ≤ ≤  and ( )0.2 0 25Y YΔ = ≤ ≤   
with the smaller time-step,  

0.005τΔ = . 
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Fig 2. Finite difference space grid 
 
     Let U ′ , V ′ , xH ′ , T ′  and C ′  denote the values of  
U , V , xH , T  and C  at the end of a time-step 
respectively. Using the explicit finite difference 
approximation, we obtain the following appropriate set 
of finite difference equations; 
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with initial and boundary conditions 
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Here the subscripts i  and j  designate the grid points 
with X  and Y  coordinates respectively and the 
superscript n represents a value of time, nτ τ= Δ  where 

0, 1, 2,....n =  The stability conditions of the method are 
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the method are 1cE << , 0.25rP ≥  and 0.25cS ≥ . 
 
5. RESULTS AND DISCUSSION 
     To observe the physical situation of the problem, we 
have illustrated the steady-state local and average shear 
stress, current density, Nusselt number and Sherwood 
number versus X and τ  respectively in Figs 3-20. The 
effect of M , oS , cE , rG , rP  and cS  on shear stress 
are shown in Figs 3-8. We see that both steady-state local 
and average shear stress increase with the rise of oS , cE  
or rG  while decrease with the increase of M , rP  or 

cS . It is concluded that the shear stress is greater for air 
and helium than water and carbondioxide respectively. 
 

       
 Fig 3. Steady-state local shear stress for 0.4,mG =  

 
 0.71,rP = 0.6,cS = 1,oS = 1mP =  & 0.01.cE =  

 

          
Fig 4. Average shear stress for 0.4,mG = 0.71,rP =  
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   0.6,cS = 1,oS = 1mP =  & 0.01.cE =  
 

    
 Fig 5. Steady-state local shear stress for 1,rG =  

0.4,mG = 0.1,M = 0.6,cS = 1mP =  & 0.01.cE =  
 

        
Fig 6. Average shear stress for 1,rG = 0.4,mG =  

  0.1,M = 0.6,cS = 1mP =  & 0.01.cE =  
 

         
Fig 7. Steady-state local shear stress for 1,rG =  
  0.4,mG = 0.1,M = 0.71,rP = 1oS =  & 1.mP =  

 

      
 Fig 8. Average shear stress for 1,rG = 0.4,mG =  

  0.1,M = 0.71,rP = 1oS =  & 1.mP =  
 

     
Fig 9. Steady-state local current density for 0.4,mG =  

         0.71,rP = 0.6,cS = 1,oS = 1mP =  & 0.01.cE =     

     
   Fig 10. Average current density for 0.4,mG =  
   0.71,rP = 0.6,cS = 1,oS = 1mP =  & 0.01.cE =  
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 Fig 11. Steady-state local current density for 1,rG =  
    0.4,mG = 0.1,M = 0.6,cS = 1mP =  & 0.01.cE =  

 

        
Fig 12. Average current density for 1,rG =  

  0.4,mG = 0.1,M = 0.6,cS = 1mP =  & 0.01.cE =  
 

     
Fig 13. Steady-state local current density for 1,rG =  

0.4,mG = 0.1,M = 0.71,rP = 1oS = & 0.01.cE =  
 

    
Fig 14. Average current density for 1,rG =  

0.4,mG = 0.1,M = 0.71,rP = 1oS = & 0.01.cE =  
 

     
Fig 15. Steady-state local Nusselt number for 1,rG =  

0.4,mG = 0.1,M = 0.6,cS = 1mP =  & 1.oS =  
 

   
Fig 16. Average Nusselt number for 1,rG =  

0.4,mG = 0.1,M = 0.6,cS = 1mP =  & 1.oS =  
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Fig 17. Steady-state local Sherwood number for 
  1,mP = .4,mG = .71,rP = .6,cS = .1M =  & .01.cE =  

 

       
 Fig 18. Average Sherwood number for 0.4,mG =  
   0.71,rP = 0.6,cS = 0.1,M = 1mP =  & 0.01.cE =  

 

 
    
     Fig 19. Steady-state local Sherwood number for      
    1,rG = 0.4,mG = 0.1,M = 0.71,rP = 1oS =  & 1.mP =  
 

         
Fig 20. Average Sherwood number for 1,rG =  

     0.4,mG = 0.1,M = 0.71,rP = 1oS =  & 1.mP =  
 

     The profiles of steady-state local and average current 
density for different values of M , oS , rP , rG , mP  and 

cS  are presented in Figs 9-14. We observe from these 
figures, both the steady-state local and average current 
density increase in case of strong rP  or cS  while 
decrease with the increase of M , oS , rG  or mP . It is 
noted that the current density is more for water and 
carbondioxide than air and helium respectively. 
     The curves of steady-state local and average Nusselt 
number are displayed in Figs 15-16 for different values 
of cE  and rP . It is found that both local and average 
Nusselt number rise with the increase of Prandtl number 
but fall with the increase of cE . It is declared that the 
Nusselt number is greater for water than air.  
     The distributions of steady-state local and average 
Sherwood number have been shown in Figs. 17-20 for 
the different values of oS , cE , rG  and cS . Both the 
local and average Sherwood number increase in case of 
strong cE , rG  or cS  while decrease with the rise of oS . 
It is concluded that the Sherwood number is more for 
carbondioxide than helium.   
     Finally, a comparison of our results is made with both 
analytical solutions for the natural convective problem at 
a heated vertical plate given by Ostrach[8] and numerical 
solutions given by Allam and Sattar[6] with no magnetic 
and rotation effects in their problem. If the viscous 
dissipation and joule heating terms are neglected in 
energy equation as well as no magnetic effect, no 
uniform velocity 0U  are assumed in our problem, it 
reduces to the problem considered by Ostrach[8]. Hence 
the comparison of the present results with analytical and 
numerical results are presented in Table 1 for steady-state 

80.τ = The accuracy of the present results may be good 
in case of all the flow variables.    
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Table 1. Comparison of the present steady-state results 
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7. NOMENCLATURE 
 
Symbol Meaning Unit 

x, y Cartesian coordinates  
u, v Velocity components ( -1ms ) 
υ Kinematic viscosity ( 2 -1m s )
ρ Density of fluid ( -3kgm )

eμ  Magnetic permeability 
τ Dimensionless time 

X, Y  Dimensionless cartesian coordinates
U, V  Dimensionless velocity components

xH    Dimensionless induced magnetic  
 field vector 

T  Dimensionless temperature 
C  Dimensionless concentration  

rG  Grashof number 

mG  Modified Grashof number 
M  Magnetic Force number 

mP   Magnetic diffusivity number 

rP  Prandtl number 

cE  Eckert number 

cS  Schmidt Number 

oS  Soret Number 
μ Coefficient of viscosity 
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