Department of Mechanical Engineering

Course no: ME-418

Heat Engine Sessional

Credit Hours: 0.75

Name of the Experiments

- 1. (a) Assembly of an SI engine
 - (b) Automobile system identification.
- 2. (a) Assembly of a CI engine
 - (b) Study of Gray Marine Diesel Engine.
- 3. Performance test of a Petrol Engine for WOT.
- 4. Performance test of a Diesel Generator engine.
- 5. Study of the gas engine of BUET power plant.

Course no: ME-418

EXPERIMENT NO. 01(a) ASSEMBLY OF AN SI ENGINE

OBJECTIVES

- a. Identification and studying the functions of different engine components
- b. Disassembling the engine
- c. Reassembling the engine
- d. Testing the assembly procedure by starting the engine

ENGINE SPECIFICATIONS

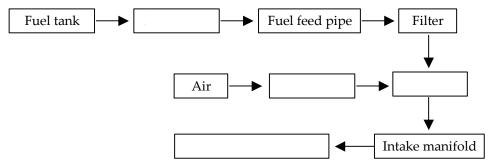
Bore	
Stroke	
No of cylinders	
Arrangement of cylinders	
Cam shaft type	
No of spark plugs	
Starter motor battery voltage	
Turbocharger availability	

PROCEDURE

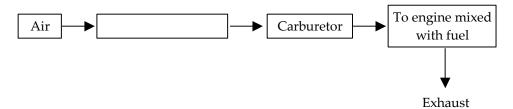
1. Overview of the engine in order to identify different components of it.

2. Dismantling:

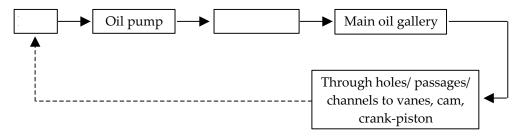
- i) Drain out the lubricating oil and water
- ii) Remove the head cover
- iii) Remove the cylinder head (Intake & Exhaust manifold and carburetor)
- iv) Remove rocker arm along with push rod
- v) Remove bottom covers (Sump)
- vi) Upright the assembly to observe the crankshaft
- 3. Do the necessary schematic diagram and note the different types of bearing.

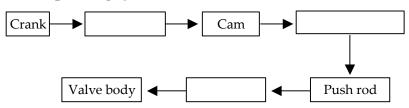

4. Assembling:

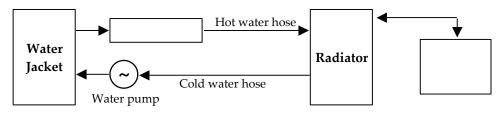
Almost reverse sequence of dismantling of followed during assembling

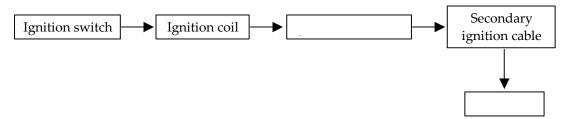

REPORT WRITING

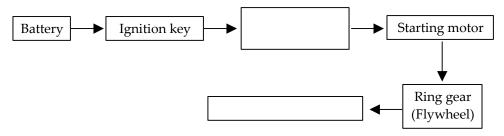
A. Identify the missing components of the following systems and briefly state their functions.


1. Fuel Supply System:


2. Air intake and exhaust circuit:


3. Lub. Oil system:

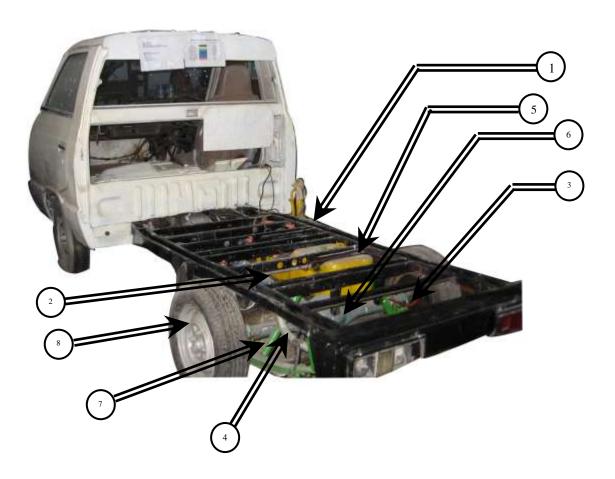

4. Valve operating system:


5. Cooling water circuit:

6. The spark Ignition system: (Mechanical CB type)

7. The starting and electrical charging system:

B. Questions:


Provide the following information briefly regarding to your observation in the experiment.

- i) No of cylinder rings, their types and functions
- ii) No of bearings, their types and functions
- iii) No of valves and mention which one was bigger, why?
- iv) Location of thermostat in cooling water circuit
- v) Location of CB point and No. of Cam lobes operating it
- vi) Identify the missing components of TOYOTA LITE ACE 1300 CC in the following page

C. Discussion:

Discuss the above study and express your comments regarding the experiment.

EXPERIMENT NO. 01(b) <u>AUTOMOBILE SYSTEM IDENTIFICATION</u>

1	Black	
2	Light Blue	
3	Red	
4	Silver	
5	Yellow	
6	Ash	
7	Green	
8	Ash	

EXPERIMENT NO. 02(a)

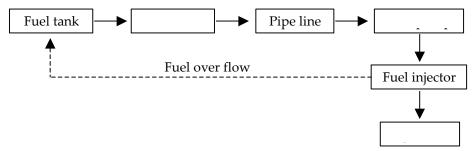
ASSEMBLY OF A CI ENGINE

- 1. Overview of the engine in order to identify different components of it.
- 2. Record the name plate data.

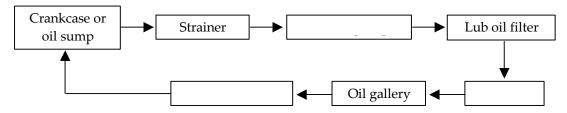
3. Engine specifications:

Bore	
Stroke	
No of cylinders	
Cam shaft type	
Injection type	
Arrangement of cylinders	

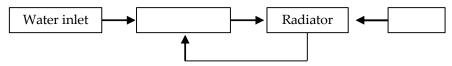
4. Dismantling:

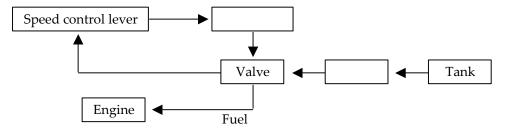

When the component of the engine is removed, the component should be studied in detail (as much as possible). Sequence to be followed during dismantling is -----

- a. Drain out lubricating oil and water
- b. Remove head cover
- c. Remove fuel line (also disconnect at the injector)
- d. Remove inlet and exhaust manifold
- e. Remove cylinder head cover
- f. Remove rocker arm along with push rod
- g. Remove lub oil line
- h. Remove timer cover
- i. Remove rear cover
- j. Remove piston


REPORT WRITING

A. Identify the missing components of the following system and briefly state their functions.


1. Fuel supply system:


2. Lubrication system:

3. Cooling system:

4. Fuel control system:

B. QUESTIONS

Provide the following information pertaining to your observation in the experiment:

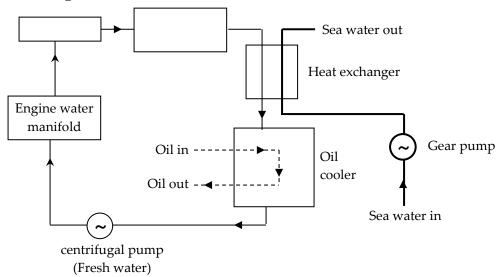
- i) No of cylinder rings, their types and functions
- ii) No of bearings, their types and functions
- iii) No of valves and mention which one was bigger
- iv) Location of cooling water pump
- v) Fuel injection type no. of holes in each nozzle

C. Discussion:

Discuss the above study and express your comments regarding the experiment.

EXPERIMENT NO. 2(b)

STUDY OF A GRAY MARINE DIESEL ENGINE


1. Complete the details of below.

- Study of a gray marine engine:
- Record name plate data.
- Show schematic diagram of cooling water circuits.
- Note the following features.
- Low Speed & High Torque Requirement of Marine Vessel.
- Two-Circuit Water Cooling System
- Number of Strokes per Cycle
- Valve configuration

REPORT WRITING

Identify the missing components of the following systems and briefly state their functions.

1. Cooling water circuit

EXPERIMENT NO. 03

PERFORMANCE TEST OF A PETROL ENGINE AT WIDE OPEN THROTTLE (WOT) CONDITION

DATA SHEET

Engine Specification & Ambient Data:

Brand	Date		
Name			
Model	Cooling	Room Temp.	
Engine No.	Silencer/Muffler	Dynamometer	Hydraulic Type
Country of Make	Lub Oil Filter	Dynamometer HP Rating	
Manufactur er	Fuel Filter	9	
Rated Output	Air Cleaner	Dry Bulb Temp. & Wet Bulb Temp.	
Rated rpm	Oil Pressure Indicator	Atm. Pressure	
No. of Cylinders	Coupling	Relative Humidity	
Lub Oil Grade	Starting	Correction Factors	As per (BS 5514)
Fuel Used	Rotation (from fly wheel side)	α=	β =
Sp. Gr. (SG) (at room			
temp.)			

Engine Loading Plan:

Rated Power = 20 hp, Rated Speed = ----- rpm

Rated Load =

Speed (rpm)	WOT Load (Kg)

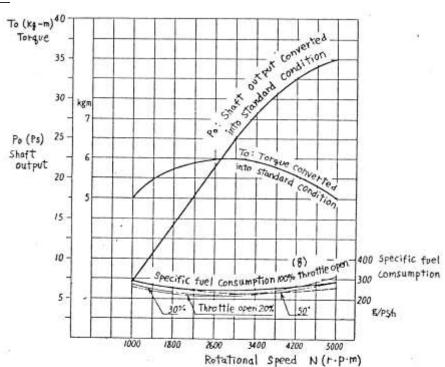


Figure: Performance Curve of a typical engine is shown as example, not for specimen

Engine Performance Data:

Model: No.: hp: rpm Control:

Dynamometer	Shaft Revolution	Fuel Cons	sumption	Lab	Condition	B. S.	Condition	Temp	erature	Cod	oling Water 1	emp.
Load		Amount Collected	Time of Collection	Bhp	Bsfc	Bhp	Bsfc	Lub Oil	Exhaust Gas	Inlet	Outlet	
W (Kg)	N (rpm)	V (ml)	t (min)	P (hp)	F (gm/bhp-hr)	P _s (hp)	F _s (gm/bhp-hr)	T ₁ (°C)	T _e (°C)	iniet	Junet	

Assignments:

- i) Plot Power & Torque vs. Speed curve.
- ii) Plot Exhaust gas temp. and Lub. Oil temp. vs. Bhp curve.
- iii) Write a short note on WOT
- iv) Compare performance under constant speed and WOT condition

DERATING

Rated (BS) Condition

Lab Condition.

 $P_r = 100 \text{ kPa}$

 $P_x =$

 $T_r = 300 \ ^{\rm o}K$

 $T_x =$

 $\phi_r = 0.6$

 $\varphi_x =$

 $\eta m = 0.85$

From Annex-F

 $\phi_x P_{sx}$

From Annex-E

 $(P_x-a \phi_x P_{sx}) / (P_r-a \phi_r P_{sr})$

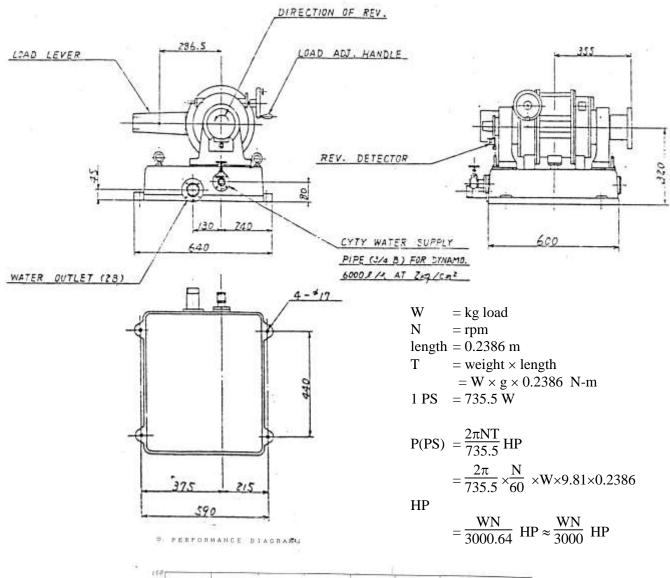
From Annex-D

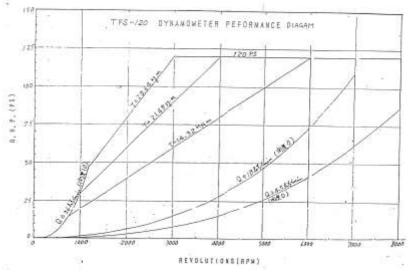
 $(T_r/T_x)^n$, n = (0.5 SI Engine)

Formula-3:

 $K = (P_x-a \phi_x P_{sx}) / (P_r-a \phi_r P_{sr}) (T_r/T_x)^n =$

Annex-C:


 $\beta =$


Annex-B:

 $\alpha =$

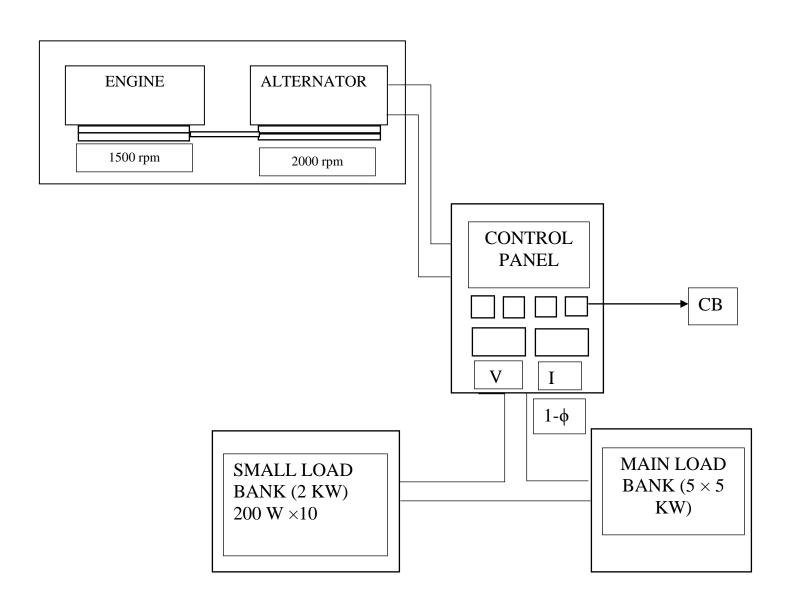
Bhp (BS) = Bhp (Lab) / α

Bsfc (BS) = Bsfc (Lab) / β

EXPERIMENT NO. 04

PERFORMANCE TEST OF A DIESEL GENERATOR ENGINE

DATA SHEET


Engine Specification & Ambient Data:

Brand Name	Date	
Model	Cooling	
Engine No.	Silencer/Muffler	
Country of Make	Lub Oil Filter	
Manufacturer	Fuel Filter	
Rated Output	Air Cleaner	
Rated rpm	Oil Pressure	
(Fixed/ Variable)	Indicator	
No. of Cylinders	Coupling	
Lub Oil Grade	Starting	
Fuel Used	Rotation (from fly wheel side)	
Sp. Gr. (SG)		
(at room temp.)		

Engine Loading Plan:									
Rated Power =	hp,	Rated Speed =	rpm						
Rated Load =	kg.								

% Load	Loading (Kg)
50	
60	
70	
80	
90	
100	
110	

Schematic Diagram of the Setup:

Ciluine Periorilarice Data	Engine	Performance	Data
----------------------------	--------	-------------	------

Model: No.: hp: rpm Control: [PF = 1]

		Shaft	Fuel Consumpt	tion					Lub Oil Temp.	
Voltage V (Volt)	Current I (A)	Revolution N (rpm)	Amount Collected V (ml)	Time of Collection t (min)	El	Electric Power (kWh)		Bsfc (gm/kW-hr)	T ₁ (°C)	Exhaust Gas Temp. T _e (°C)

Assignments:

- i. Plot Bsfc vs. Power (based on Electrical KWe) Curve.
- ii. Note, exhaust temperature of CI and SI engines. How are they different and why?
- iii. Note, compression ratios of CI and SI engines. How are they different and why?